Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
b9110af9
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
接近 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b9110af9
编写于
6月 11, 2021
作者:
H
Haoxin Ma
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feat_dim, vocab_size
上级
3855522e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
227 addition
and
139 deletion
+227
-139
deepspeech/exps/deepspeech2/model.py
deepspeech/exps/deepspeech2/model.py
+2
-2
deepspeech/frontend/featurizer/speech_featurizer.py
deepspeech/frontend/featurizer/speech_featurizer.py
+0
-43
deepspeech/frontend/utility.py
deepspeech/frontend/utility.py
+1
-1
deepspeech/io/collator.py
deepspeech/io/collator.py
+138
-28
deepspeech/io/dataset.py
deepspeech/io/dataset.py
+65
-63
examples/tiny/s0/conf/deepspeech2.yaml
examples/tiny/s0/conf/deepspeech2.yaml
+21
-2
未找到文件。
deepspeech/exps/deepspeech2/model.py
浏览文件 @
b9110af9
...
@@ -137,7 +137,7 @@ class DeepSpeech2Trainer(Trainer):
...
@@ -137,7 +137,7 @@ class DeepSpeech2Trainer(Trainer):
def
setup_dataloader
(
self
):
def
setup_dataloader
(
self
):
config
=
self
.
config
.
clone
()
config
=
self
.
config
.
clone
()
config
.
defrost
()
config
.
defrost
()
config
.
data
.
keep_transcription_text
=
False
config
.
collator
.
keep_transcription_text
=
False
config
.
data
.
manifest
=
config
.
data
.
train_manifest
config
.
data
.
manifest
=
config
.
data
.
train_manifest
train_dataset
=
ManifestDataset
.
from_config
(
config
)
train_dataset
=
ManifestDataset
.
from_config
(
config
)
...
@@ -165,7 +165,7 @@ class DeepSpeech2Trainer(Trainer):
...
@@ -165,7 +165,7 @@ class DeepSpeech2Trainer(Trainer):
sortagrad
=
config
.
data
.
sortagrad
,
sortagrad
=
config
.
data
.
sortagrad
,
shuffle_method
=
config
.
data
.
shuffle_method
)
shuffle_method
=
config
.
data
.
shuffle_method
)
collate_fn
=
SpeechCollator
(
config
=
config
,
keep_transcription_text
=
False
)
collate_fn
=
SpeechCollator
.
from_config
(
config
)
self
.
train_loader
=
DataLoader
(
self
.
train_loader
=
DataLoader
(
train_dataset
,
train_dataset
,
batch_sampler
=
batch_sampler
,
batch_sampler
=
batch_sampler
,
...
...
deepspeech/frontend/featurizer/speech_featurizer.py
浏览文件 @
b9110af9
...
@@ -104,50 +104,7 @@ class SpeechFeaturizer(object):
...
@@ -104,50 +104,7 @@ class SpeechFeaturizer(object):
speech_segment
.
transcript
)
speech_segment
.
transcript
)
return
spec_feature
,
text_ids
return
spec_feature
,
text_ids
@
property
def
vocab_size
(
self
):
"""Return the vocabulary size.
Returns:
int: Vocabulary size.
"""
return
self
.
_text_featurizer
.
vocab_size
@
property
def
vocab_list
(
self
):
"""Return the vocabulary in list.
Returns:
List[str]:
"""
return
self
.
_text_featurizer
.
vocab_list
@
property
def
vocab_dict
(
self
):
"""Return the vocabulary in dict.
Returns:
Dict[str, int]:
"""
return
self
.
_text_featurizer
.
vocab_dict
@
property
def
feature_size
(
self
):
"""Return the audio feature size.
Returns:
int: audio feature size.
"""
return
self
.
_audio_featurizer
.
feature_size
@
property
def
stride_ms
(
self
):
"""time length in `ms` unit per frame
Returns:
float: time(ms)/frame
"""
return
self
.
_audio_featurizer
.
stride_ms
@
property
@
property
def
text_feature
(
self
):
def
text_feature
(
self
):
...
...
deepspeech/frontend/utility.py
浏览文件 @
b9110af9
...
@@ -82,7 +82,7 @@ def read_manifest(
...
@@ -82,7 +82,7 @@ def read_manifest(
]
]
if
all
(
conditions
):
if
all
(
conditions
):
manifest
.
append
(
json_data
)
manifest
.
append
(
json_data
)
return
manifest
return
manifest
,
json_data
[
"feat_shape"
][
-
1
]
def
rms_to_db
(
rms
:
float
):
def
rms_to_db
(
rms
:
float
):
...
...
deepspeech/io/collator.py
浏览文件 @
b9110af9
...
@@ -22,6 +22,8 @@ from deepspeech.frontend.normalizer import FeatureNormalizer
...
@@ -22,6 +22,8 @@ from deepspeech.frontend.normalizer import FeatureNormalizer
from
deepspeech.frontend.speech
import
SpeechSegment
from
deepspeech.frontend.speech
import
SpeechSegment
import
io
import
io
import
time
import
time
from
yacs.config
import
CfgNode
from
typing
import
Optional
from
collections
import
namedtuple
from
collections
import
namedtuple
...
@@ -33,51 +35,134 @@ logger = Log(__name__).getlog()
...
@@ -33,51 +35,134 @@ logger = Log(__name__).getlog()
TarLocalData
=
namedtuple
(
'TarLocalData'
,
[
'tar2info'
,
'tar2object'
])
TarLocalData
=
namedtuple
(
'TarLocalData'
,
[
'tar2info'
,
'tar2object'
])
class
SpeechCollator
():
class
SpeechCollator
():
def
__init__
(
self
,
config
,
keep_transcription_text
=
True
):
@
classmethod
"""
def
params
(
cls
,
config
:
Optional
[
CfgNode
]
=
None
)
->
CfgNode
:
Padding audio features with zeros to make them have the same shape (or
default
=
CfgNode
(
a user-defined shape) within one bach.
dict
(
augmentation_config
=
""
,
random_seed
=
0
,
mean_std_filepath
=
""
,
unit_type
=
"char"
,
vocab_filepath
=
""
,
spm_model_prefix
=
""
,
specgram_type
=
'linear'
,
# 'linear', 'mfcc', 'fbank'
feat_dim
=
0
,
# 'mfcc', 'fbank'
delta_delta
=
False
,
# 'mfcc', 'fbank'
stride_ms
=
10.0
,
# ms
window_ms
=
20.0
,
# ms
n_fft
=
None
,
# fft points
max_freq
=
None
,
# None for samplerate/2
target_sample_rate
=
16000
,
# target sample rate
use_dB_normalization
=
True
,
target_dB
=-
20
,
dither
=
1.0
,
# feature dither
keep_transcription_text
=
True
))
if ``keep_transcription_text`` is False, text is token ids else is raw string.
if
config
is
not
None
:
config
.
merge_from_other_cfg
(
default
)
return
default
@
classmethod
def
from_config
(
cls
,
config
):
"""Build a SpeechCollator object from a config.
Args:
config (yacs.config.CfgNode): configs object.
Returns:
SpeechCollator: collator object.
"""
"""
self
.
_keep_transcription_text
=
keep_transcription_text
assert
'augmentation_config'
in
config
.
collator
assert
'keep_transcription_text'
in
config
.
collator
assert
'mean_std_filepath'
in
config
.
collator
assert
'vocab_filepath'
in
config
.
data
assert
'specgram_type'
in
config
.
collator
assert
'n_fft'
in
config
.
collator
assert
config
.
collator
if
isinstance
(
config
.
data
.
augmentation_config
,
(
str
,
bytes
)):
if
isinstance
(
config
.
collator
.
augmentation_config
,
(
str
,
bytes
)):
if
config
.
data
.
augmentation_config
:
if
config
.
collator
.
augmentation_config
:
aug_file
=
io
.
open
(
aug_file
=
io
.
open
(
config
.
data
.
augmentation_config
,
mode
=
'r'
,
encoding
=
'utf8'
)
config
.
collator
.
augmentation_config
,
mode
=
'r'
,
encoding
=
'utf8'
)
else
:
else
:
aug_file
=
io
.
StringIO
(
initial_value
=
'{}'
,
newline
=
''
)
aug_file
=
io
.
StringIO
(
initial_value
=
'{}'
,
newline
=
''
)
else
:
else
:
aug_file
=
config
.
data
.
augmentation_config
aug_file
=
config
.
collator
.
augmentation_config
assert
isinstance
(
aug_file
,
io
.
StringIO
)
assert
isinstance
(
aug_file
,
io
.
StringIO
)
speech_collator
=
cls
(
aug_file
=
aug_file
,
random_seed
=
0
,
mean_std_filepath
=
config
.
collator
.
mean_std_filepath
,
unit_type
=
config
.
collator
.
unit_type
,
vocab_filepath
=
config
.
data
.
vocab_filepath
,
spm_model_prefix
=
config
.
collator
.
spm_model_prefix
,
specgram_type
=
config
.
collator
.
specgram_type
,
feat_dim
=
config
.
collator
.
feat_dim
,
delta_delta
=
config
.
collator
.
delta_delta
,
stride_ms
=
config
.
collator
.
stride_ms
,
window_ms
=
config
.
collator
.
window_ms
,
n_fft
=
config
.
collator
.
n_fft
,
max_freq
=
config
.
collator
.
max_freq
,
target_sample_rate
=
config
.
collator
.
target_sample_rate
,
use_dB_normalization
=
config
.
collator
.
use_dB_normalization
,
target_dB
=
config
.
collator
.
target_dB
,
dither
=
config
.
collator
.
dither
,
keep_transcription_text
=
config
.
collator
.
keep_transcription_text
)
return
speech_collator
def
__init__
(
self
,
aug_file
,
mean_std_filepath
,
vocab_filepath
,
spm_model_prefix
,
random_seed
=
0
,
unit_type
=
"char"
,
specgram_type
=
'linear'
,
# 'linear', 'mfcc', 'fbank'
feat_dim
=
0
,
# 'mfcc', 'fbank'
delta_delta
=
False
,
# 'mfcc', 'fbank'
stride_ms
=
10.0
,
# ms
window_ms
=
20.0
,
# ms
n_fft
=
None
,
# fft points
max_freq
=
None
,
# None for samplerate/2
target_sample_rate
=
16000
,
# target sample rate
use_dB_normalization
=
True
,
target_dB
=-
20
,
dither
=
1.0
,
keep_transcription_text
=
True
):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
if ``keep_transcription_text`` is False, text is token ids else is raw string.
"""
self
.
_keep_transcription_text
=
keep_transcription_text
self
.
_local_data
=
TarLocalData
(
tar2info
=
{},
tar2object
=
{})
self
.
_local_data
=
TarLocalData
(
tar2info
=
{},
tar2object
=
{})
self
.
_augmentation_pipeline
=
AugmentationPipeline
(
self
.
_augmentation_pipeline
=
AugmentationPipeline
(
augmentation_config
=
aug_file
.
read
(),
augmentation_config
=
aug_file
.
read
(),
random_seed
=
config
.
data
.
random_seed
)
random_seed
=
random_seed
)
self
.
_normalizer
=
FeatureNormalizer
(
self
.
_normalizer
=
FeatureNormalizer
(
config
.
data
.
mean_std_filepath
)
if
config
.
data
.
mean_std_filepath
else
None
mean_std_filepath
)
if
mean_std_filepath
else
None
self
.
_stride_ms
=
config
.
data
.
stride_ms
self
.
_stride_ms
=
stride_ms
self
.
_target_sample_rate
=
config
.
data
.
target_sample_rate
self
.
_target_sample_rate
=
target_sample_rate
self
.
_speech_featurizer
=
SpeechFeaturizer
(
self
.
_speech_featurizer
=
SpeechFeaturizer
(
unit_type
=
config
.
data
.
unit_type
,
unit_type
=
unit_type
,
vocab_filepath
=
config
.
data
.
vocab_filepath
,
vocab_filepath
=
vocab_filepath
,
spm_model_prefix
=
config
.
data
.
spm_model_prefix
,
spm_model_prefix
=
spm_model_prefix
,
specgram_type
=
config
.
data
.
specgram_type
,
specgram_type
=
specgram_type
,
feat_dim
=
config
.
data
.
feat_dim
,
feat_dim
=
feat_dim
,
delta_delta
=
config
.
data
.
delta_delta
,
delta_delta
=
delta_delta
,
stride_ms
=
config
.
data
.
stride_ms
,
stride_ms
=
stride_ms
,
window_ms
=
config
.
data
.
window_ms
,
window_ms
=
window_ms
,
n_fft
=
config
.
data
.
n_fft
,
n_fft
=
n_fft
,
max_freq
=
config
.
data
.
max_freq
,
max_freq
=
max_freq
,
target_sample_rate
=
config
.
data
.
target_sample_rate
,
target_sample_rate
=
target_sample_rate
,
use_dB_normalization
=
config
.
data
.
use_dB_normalization
,
use_dB_normalization
=
use_dB_normalization
,
target_dB
=
config
.
data
.
target_dB
,
target_dB
=
target_dB
,
dither
=
config
.
data
.
dither
)
dither
=
dither
)
def
_parse_tar
(
self
,
file
):
def
_parse_tar
(
self
,
file
):
"""Parse a tar file to get a tarfile object
"""Parse a tar file to get a tarfile object
...
@@ -196,3 +281,28 @@ class SpeechCollator():
...
@@ -196,3 +281,28 @@ class SpeechCollator():
texts
,
padding_value
=
IGNORE_ID
).
astype
(
np
.
int64
)
texts
,
padding_value
=
IGNORE_ID
).
astype
(
np
.
int64
)
text_lens
=
np
.
array
(
text_lens
).
astype
(
np
.
int64
)
text_lens
=
np
.
array
(
text_lens
).
astype
(
np
.
int64
)
return
utts
,
padded_audios
,
audio_lens
,
padded_texts
,
text_lens
return
utts
,
padded_audios
,
audio_lens
,
padded_texts
,
text_lens
@
property
def
vocab_size
(
self
):
return
self
.
_speech_featurizer
.
vocab_size
@
property
def
vocab_list
(
self
):
return
self
.
_speech_featurizer
.
vocab_list
@
property
def
vocab_dict
(
self
):
return
self
.
_speech_featurizer
.
vocab_dict
@
property
def
text_feature
(
self
):
return
self
.
_text_featurizer
self
.
_speech_featurizer
.
text_feature
@
property
def
feature_size
(
self
):
return
self
.
_speech_featurizer
.
feature_size
@
property
def
stride_ms
(
self
):
return
self
.
_speech_featurizer
.
stride_ms
deepspeech/io/dataset.py
浏览文件 @
b9110af9
...
@@ -55,20 +55,6 @@ class ManifestDataset(Dataset):
...
@@ -55,20 +55,6 @@ class ManifestDataset(Dataset):
min_output_len
=
0.0
,
min_output_len
=
0.0
,
max_output_input_ratio
=
float
(
'inf'
),
max_output_input_ratio
=
float
(
'inf'
),
min_output_input_ratio
=
0.0
,
min_output_input_ratio
=
0.0
,
stride_ms
=
10.0
,
# ms
window_ms
=
20.0
,
# ms
n_fft
=
None
,
# fft points
max_freq
=
None
,
# None for samplerate/2
raw_wav
=
True
,
# use raw_wav or kaldi feature
specgram_type
=
'linear'
,
# 'linear', 'mfcc', 'fbank'
feat_dim
=
0
,
# 'mfcc', 'fbank'
delta_delta
=
False
,
# 'mfcc', 'fbank'
dither
=
1.0
,
# feature dither
target_sample_rate
=
16000
,
# target sample rate
use_dB_normalization
=
True
,
target_dB
=-
20
,
random_seed
=
0
,
keep_transcription_text
=
False
,
batch_size
=
32
,
# batch size
batch_size
=
32
,
# batch size
num_workers
=
0
,
# data loader workers
num_workers
=
0
,
# data loader workers
sortagrad
=
False
,
# sorted in first epoch when True
sortagrad
=
False
,
# sorted in first epoch when True
...
@@ -116,21 +102,19 @@ class ManifestDataset(Dataset):
...
@@ -116,21 +102,19 @@ class ManifestDataset(Dataset):
min_output_len
=
config
.
data
.
min_output_len
,
min_output_len
=
config
.
data
.
min_output_len
,
max_output_input_ratio
=
config
.
data
.
max_output_input_ratio
,
max_output_input_ratio
=
config
.
data
.
max_output_input_ratio
,
min_output_input_ratio
=
config
.
data
.
min_output_input_ratio
,
min_output_input_ratio
=
config
.
data
.
min_output_input_ratio
,
stride_ms
=
config
.
data
.
stride_ms
,
)
window_ms
=
config
.
data
.
window_ms
,
n_fft
=
config
.
data
.
n_fft
,
max_freq
=
config
.
data
.
max_freq
,
target_sample_rate
=
config
.
data
.
target_sample_rate
,
specgram_type
=
config
.
data
.
specgram_type
,
feat_dim
=
config
.
data
.
feat_dim
,
delta_delta
=
config
.
data
.
delta_delta
,
dither
=
config
.
data
.
dither
,
use_dB_normalization
=
config
.
data
.
use_dB_normalization
,
target_dB
=
config
.
data
.
target_dB
,
random_seed
=
config
.
data
.
random_seed
,
keep_transcription_text
=
config
.
data
.
keep_transcription_text
)
return
dataset
return
dataset
def
_read_vocab
(
self
,
vocab_filepath
):
"""Load vocabulary from file."""
vocab_lines
=
[]
with
open
(
vocab_filepath
,
'r'
,
encoding
=
'utf-8'
)
as
file
:
vocab_lines
.
extend
(
file
.
readlines
())
vocab_list
=
[
line
[:
-
1
]
for
line
in
vocab_lines
]
return
vocab_list
def
__init__
(
self
,
def
__init__
(
self
,
manifest_path
,
manifest_path
,
unit_type
,
unit_type
,
...
@@ -143,20 +127,7 @@ class ManifestDataset(Dataset):
...
@@ -143,20 +127,7 @@ class ManifestDataset(Dataset):
max_output_len
=
float
(
'inf'
),
max_output_len
=
float
(
'inf'
),
min_output_len
=
0.0
,
min_output_len
=
0.0
,
max_output_input_ratio
=
float
(
'inf'
),
max_output_input_ratio
=
float
(
'inf'
),
min_output_input_ratio
=
0.0
,
min_output_input_ratio
=
0.0
):
stride_ms
=
10.0
,
window_ms
=
20.0
,
n_fft
=
None
,
max_freq
=
None
,
target_sample_rate
=
16000
,
specgram_type
=
'linear'
,
feat_dim
=
None
,
delta_delta
=
False
,
dither
=
1.0
,
use_dB_normalization
=
True
,
target_dB
=-
20
,
random_seed
=
0
,
keep_transcription_text
=
False
):
"""Manifest Dataset
"""Manifest Dataset
Args:
Args:
...
@@ -186,30 +157,11 @@ class ManifestDataset(Dataset):
...
@@ -186,30 +157,11 @@ class ManifestDataset(Dataset):
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
keep_transcription_text (bool, optional): True, when not in training mode, will not do tokenizer; Defaults to False.
"""
"""
super
().
__init__
()
super
().
__init__
()
self
.
_stride_ms
=
stride_ms
self
.
_target_sample_rate
=
target_sample_rate
# self._rng = np.random.RandomState(random_seed)
self
.
_speech_featurizer
=
SpeechFeaturizer
(
unit_type
=
unit_type
,
vocab_filepath
=
vocab_filepath
,
spm_model_prefix
=
spm_model_prefix
,
specgram_type
=
specgram_type
,
feat_dim
=
feat_dim
,
delta_delta
=
delta_delta
,
stride_ms
=
stride_ms
,
window_ms
=
window_ms
,
n_fft
=
n_fft
,
max_freq
=
max_freq
,
target_sample_rate
=
target_sample_rate
,
use_dB_normalization
=
use_dB_normalization
,
target_dB
=
target_dB
,
dither
=
dither
)
self
.
_rng
=
np
.
random
.
RandomState
(
random_seed
)
self
.
_keep_transcription_text
=
keep_transcription_text
# read manifest
# read manifest
self
.
_manifest
=
read_manifest
(
self
.
_manifest
,
self
.
_feature_size
=
read_manifest
(
manifest_path
=
manifest_path
,
manifest_path
=
manifest_path
,
max_input_len
=
max_input_len
,
max_input_len
=
max_input_len
,
min_input_len
=
min_input_len
,
min_input_len
=
min_input_len
,
...
@@ -219,9 +171,59 @@ class ManifestDataset(Dataset):
...
@@ -219,9 +171,59 @@ class ManifestDataset(Dataset):
min_output_input_ratio
=
min_output_input_ratio
)
min_output_input_ratio
=
min_output_input_ratio
)
self
.
_manifest
.
sort
(
key
=
lambda
x
:
x
[
"feat_shape"
][
0
])
self
.
_manifest
.
sort
(
key
=
lambda
x
:
x
[
"feat_shape"
][
0
])
self
.
_vocab_list
=
self
.
_read_vocab
(
vocab_filepath
)
@
property
@
property
def
manifest
(
self
):
def
manifest
(
self
):
return
self
.
_manifest
return
self
.
_manifest
@
property
def
vocab_size
(
self
):
"""Return the vocabulary size.
Returns:
int: Vocabulary size.
"""
return
len
(
self
.
_vocab_list
)
@
property
def
vocab_list
(
self
):
"""Return the vocabulary in list.
Returns:
List[str]:
"""
return
self
.
_vocab_list
@
property
def
vocab_dict
(
self
):
"""Return the vocabulary in dict.
Returns:
Dict[str, int]:
"""
vocab_dict
=
dict
(
[(
token
,
idx
)
for
(
idx
,
token
)
in
enumerate
(
self
.
_vocab_list
)])
return
vocab_dict
@
property
def
feature_size
(
self
):
"""Return the audio feature size.
Returns:
int: audio feature size.
"""
return
self
.
_feature_size
@
property
def
stride_ms
(
self
):
"""time length in `ms` unit per frame
Returns:
float: time(ms)/frame
"""
return
self
.
_audio_featurizer
.
stride_ms
def
__len__
(
self
):
def
__len__
(
self
):
return
len
(
self
.
_manifest
)
return
len
(
self
.
_manifest
)
...
...
examples/tiny/s0/conf/deepspeech2.yaml
浏览文件 @
b9110af9
...
@@ -4,9 +4,10 @@ data:
...
@@ -4,9 +4,10 @@ data:
dev_manifest
:
data/manifest.tiny
dev_manifest
:
data/manifest.tiny
test_manifest
:
data/manifest.tiny
test_manifest
:
data/manifest.tiny
mean_std_filepath
:
data/mean_std.json
mean_std_filepath
:
data/mean_std.json
unit_type
:
char
vocab_filepath
:
data/vocab.txt
vocab_filepath
:
data/vocab.txt
augmentation_config
:
conf/augmentation.json
augmentation_config
:
conf/augmentation.json
batch_size
:
2
batch_size
:
4
min_input_len
:
0.0
min_input_len
:
0.0
max_input_len
:
27.0
max_input_len
:
27.0
min_output_len
:
0.0
min_output_len
:
0.0
...
@@ -28,6 +29,24 @@ data:
...
@@ -28,6 +29,24 @@ data:
sortagrad
:
True
sortagrad
:
True
shuffle_method
:
batch_shuffle
shuffle_method
:
batch_shuffle
num_workers
:
0
num_workers
:
0
collator
:
augmentation_config
:
conf/augmentation.json
random_seed
:
0
mean_std_filepath
:
data/mean_std.json
spm_model_prefix
:
specgram_type
:
linear
feat_dim
:
delta_delta
:
False
stride_ms
:
10.0
window_ms
:
20.0
n_fft
:
None
max_freq
:
None
target_sample_rate
:
16000
use_dB_normalization
:
True
target_dB
:
-20
dither
:
1.0
keep_transcription_text
:
True
model
:
model
:
num_conv_layers
:
2
num_conv_layers
:
2
...
@@ -37,7 +56,7 @@ model:
...
@@ -37,7 +56,7 @@ model:
share_rnn_weights
:
True
share_rnn_weights
:
True
training
:
training
:
n_epoch
:
10
n_epoch
:
21
lr
:
1e-5
lr
:
1e-5
lr_decay
:
1.0
lr_decay
:
1.0
weight_decay
:
1e-06
weight_decay
:
1e-06
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录