提交 b585684b 编写于 作者: H huangyuxin

add function: test export

上级 2d3b2aed
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from deepspeech.exps.deepspeech2.config import get_cfg_defaults
from deepspeech.exps.deepspeech2.model import DeepSpeech2ExportTester as ExportTester
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.utility import print_arguments
def main_sp(config, args):
exp = ExportTester(config, args)
exp.setup()
exp.run_test()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--model_type")
args = parser.parse_args()
print_arguments(args, globals())
if args.model_type is None:
args.model_type = 'offline'
print("model_type:{}".format(args.model_type))
# https://yaml.org/type/float.html
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
main(config, args)
......@@ -20,6 +20,7 @@ from typing import Optional
import numpy as np
import paddle
from paddle import distributed as dist
from paddle import inference
from paddle.io import DataLoader
from yacs.config import CfgNode
......@@ -145,7 +146,7 @@ class DeepSpeech2Trainer(Trainer):
learning_rate=config.training.lr,
gamma=config.training.lr_decay,
verbose=True)
optimizer = paddle.optimizer.Adam(
optimizer = paddle.optimizer.SGD( #Adam
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
......@@ -395,3 +396,332 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir
class DeepSpeech2ExportTester(DeepSpeech2Trainer):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
# testing config
default = CfgNode(
dict(
alpha=2.5, # Coef of LM for beam search.
beta=0.3, # Coef of WC for beam search.
cutoff_prob=1.0, # Cutoff probability for pruning.
cutoff_top_n=40, # Cutoff number for pruning.
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
decoding_method='ctc_beam_search', # Decoding method. Options: ctc_beam_search, ctc_greedy
error_rate_type='wer', # Error rate type for evaluation. Options `wer`, 'cer'
num_proc_bsearch=8, # # of CPUs for beam search.
beam_size=500, # Beam search width.
batch_size=128, # decoding batch size
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self, config, args):
super().__init__(config, args)
def ordid2token(self, texts, texts_len):
""" ord() id to chr() chr """
trans = []
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
trans.append(''.join([chr(i) for i in ids]))
return trans
def compute_metrics(self,
utts,
audio,
audio_len,
texts,
texts_len,
fout=None):
cfg = self.config.decoding
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer
vocab_list = self.test_loader.collate_fn.vocab_list
batch_size = self.config.decoding.batch_size
output_prob_list = []
output_lens_list = []
decoder_chunk_size = 8
subsampling_rate = self.model.encoder.conv.subsampling_rate
receptive_field_length = self.model.encoder.conv.receptive_field_length
chunk_stride = subsampling_rate * decoder_chunk_size
chunk_size = (decoder_chunk_size - 1
) * subsampling_rate + receptive_field_length
x_batch = audio.numpy()
x_len_batch = audio_len.numpy().astype(np.int64)
max_len_batch = x_batch.shape[1]
batch_padding_len = chunk_stride - (
max_len_batch - chunk_size
) % chunk_stride # The length of padding for the batch
x_list = np.split(x_batch, x_batch.shape[0], axis=0)
x_len_list = np.split(x_len_batch, x_batch.shape[0], axis=0)
for x, x_len in zip(x_list, x_len_list):
assert (chunk_size <= x_len[0])
eouts_chunk_list = []
eouts_chunk_lens_list = []
padding_len_x = chunk_stride - (x_len[0] - chunk_size
) % chunk_stride
padding = np.zeros(
(x.shape[0], padding_len_x, x.shape[2]), dtype=np.float32)
padded_x = np.concatenate([x, padding], axis=1)
num_chunk = (x_len[0] + padding_len_x - chunk_size
) / chunk_stride + 1
num_chunk = int(num_chunk)
chunk_state_h_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
dtype=np.float32)
chunk_state_c_box = np.zeros(
(self.config.model.num_rnn_layers, 1,
self.config.model.rnn_layer_size),
dtype=np.float32)
input_names = self.predictor.get_input_names()
audio_handle = self.predictor.get_input_handle(input_names[0])
audio_len_handle = self.predictor.get_input_handle(input_names[1])
h_box_handle = self.predictor.get_input_handle(input_names[2])
c_box_handle = self.predictor.get_input_handle(input_names[3])
probs_chunk_list = []
probs_chunk_lens_list = []
for i in range(0, num_chunk):
start = i * chunk_stride
end = start + chunk_size
x_chunk = padded_x[:, start:end, :]
x_len_left = np.where(x_len - i * chunk_stride < 0,
np.zeros_like(x_len, dtype=np.int64),
x_len - i * chunk_stride)
x_chunk_len_tmp = np.ones_like(
x_len, dtype=np.int64) * chunk_size
x_chunk_lens = np.where(x_len_left < x_chunk_len_tmp,
x_len_left, x_chunk_len_tmp)
if (x_chunk_lens[0] <
receptive_field_length): #means the number of input frames in the chunk is not enough for predicting one prob
break
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(chunk_state_h_box)
c_box_handle.reshape(chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(chunk_state_c_box)
output_names = self.predictor.get_output_names()
output_handle = self.predictor.get_output_handle(
output_names[0])
output_lens_handle = self.predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.predictor.get_output_handle(
output_names[3])
self.predictor.run()
output_chunk_prob = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
chunk_state_h_box = output_state_h_handle.copy_to_cpu()
chunk_state_c_box = output_state_c_handle.copy_to_cpu()
output_chunk_prob = paddle.to_tensor(output_chunk_prob)
output_chunk_lens = paddle.to_tensor(output_chunk_lens)
probs_chunk_list.append(output_chunk_prob)
probs_chunk_lens_list.append(output_chunk_lens)
output_prob = paddle.concat(probs_chunk_list, axis=1)
output_lens = paddle.add_n(probs_chunk_lens_list)
output_prob_padding_len = max_len_batch + batch_padding_len - output_prob.shape[
1]
output_prob_padding = paddle.zeros(
(1, output_prob_padding_len, output_prob.shape[2]),
dtype="float32") # The prob padding for a piece of utterance
output_prob = paddle.concat(
[output_prob, output_prob_padding], axis=1)
output_prob_list.append(output_prob)
output_lens_list.append(output_lens)
output_prob_branch = paddle.concat(output_prob_list, axis=0)
output_lens_branch = paddle.concat(output_lens_list, axis=0)
"""
x = audio.numpy()
x_len = audio_len.numpy().astype(np.int64)
input_names = self.predictor.get_input_names()
audio_handle = self.predictor.get_input_handle(input_names[0])
audio_len_handle = self.predictor.get_input_handle(input_names[1])
h_box_handle = self.predictor.get_input_handle(input_names[2])
c_box_handle = self.predictor.get_input_handle(input_names[3])
audio_handle.reshape(x.shape)
audio_handle.copy_from_cpu(x)
audio_len_handle.reshape(x_len.shape)
audio_len_handle.copy_from_cpu(x_len)
init_state_h_box = np.zeros((self.config.model.num_rnn_layers, audio.shape[0], self.config.model.rnn_layer_size), dtype=np.float32)
init_state_c_box = np.zeros((self.config.model.num_rnn_layers, audio.shape[0], self.config.model.rnn_layer_size), dtype=np.float32)
h_box_handle.reshape(init_state_h_box.shape)
h_box_handle.copy_from_cpu(init_state_h_box)
c_box_handle.reshape(init_state_c_box.shape)
c_box_handle.copy_from_cpu(init_state_c_box)
#self.autolog.times.start()
#self.autolog.times.stamp()
self.predictor.run()
output_names = self.predictor.get_output_names()
output_handle = self.predictor.get_output_handle(output_names[0])
output_lens_handle = self.predictor.get_output_handle(output_names[1])
output_state_h_handle = self.predictor.get_output_handle(output_names[2])
output_state_c_handle = self.predictor.get_output_handle(output_names[3])
output_prob = output_handle.copy_to_cpu()
output_lens = output_lens_handle.copy_to_cpu()
output_stata_h_box = output_state_h_handle.copy_to_cpu()
output_stata_c_box = output_state_c_handle.copy_to_cpu()
output_prob_branch = paddle.to_tensor(output_prob)
output_lens_branch = paddle.to_tensor(output_lens)
"""
result_transcripts = self.model.decode_by_probs(
output_prob_branch,
output_lens_branch,
vocab_list,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
#self.autolog.times.stamp()
#self.autolog.times.stamp()
#self.autolog.times.end()
target_transcripts = self.ordid2token(texts, texts_len)
for utt, target, result in zip(utts, target_transcripts,
result_transcripts):
errors, len_ref = errors_func(target, result)
errors_sum += errors
len_refs += len_ref
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
logger.info("Current error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins,
error_rate=errors_sum / len_refs,
error_rate_type=cfg.error_rate_type)
@mp_tools.rank_zero_only
@paddle.no_grad()
def test(self):
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
#self.autolog = Autolog(
# batch_size=self.config.decoding.batch_size,
# model_name="deepspeech2",
# model_precision="fp32").getlog()
self.model.eval()
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
utts, audio, audio_len, texts, texts_len = batch
metrics = self.compute_metrics(utts, audio, audio_len, texts,
texts_len, fout)
errors_sum += metrics['errors_sum']
len_refs += metrics['len_refs']
num_ins += metrics['num_ins']
error_rate_type = metrics['error_rate_type']
logger.info("Error rate [%s] (%d/?) = %f" %
(error_rate_type, num_ins, errors_sum / len_refs))
# logging
msg = "Test: "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "Final error rate [%s] (%d/%d) = %f" % (
error_rate_type, num_ins, num_ins, errors_sum / len_refs)
logger.info(msg)
#self.autolog.report()
def run_test(self):
try:
self.test()
except KeyboardInterrupt:
exit(-1)
def run_export(self):
try:
self.export()
except KeyboardInterrupt:
exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
self.setup_output_dir()
#self.setup_checkpointer()
self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def setup_output_dir(self):
"""Create a directory used for output.
"""
# output dir
if self.args.output:
output_dir = Path(self.args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
else:
output_dir = Path(self.args.export_path).expanduser().parent.parent
output_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = output_dir
def setup_model(self):
super().setup_model()
if self.args.model_type == 'online':
#inference_dir = "exp/deepspeech2_online/checkpoints/"
#inference_dir = "exp/deepspeech2_online_3rr_1fc_lr_decay0.91_lstm/checkpoints/"
#speedyspeech_config = inference.Config(
# str(Path(inference_dir) / "avg_1.jit.pdmodel"),
# str(Path(inference_dir) / "avg_1.jit.pdiparams"))
speedyspeech_config = inference.Config(
self.args.export_path + ".pdmodel",
self.args.export_path + ".pdiparams")
speedyspeech_config.enable_use_gpu(100, 0)
speedyspeech_config.enable_memory_optim()
speedyspeech_predictor = inference.create_predictor(
speedyspeech_config)
self.predictor = speedyspeech_predictor
......@@ -30,4 +30,6 @@ class Conv2dSubsampling4Online(Conv2dSubsampling4):
#b, c, t, f = paddle.shape(x) #not work under jit
x = x.transpose([0, 2, 1, 3]).reshape([0, 0, -1])
x_len = ((x_len - 1) // 2 - 1) // 2
x_len = paddle.where(x_len >= 0, x_len,
paddle.zeros_like(x_len.shape, "int64"))
return x, x_len
......@@ -325,6 +325,24 @@ class DeepSpeech2ModelOnline(nn.Layer):
lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
cutoff_top_n, num_processes)
@paddle.no_grad()
def decode_by_probs(self, probs, probs_len, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size,
cutoff_prob, cutoff_top_n, num_processes):
# init once
# decoders only accept string encoded in utf-8
self.decoder.init_decode(
beam_alpha=beam_alpha,
beam_beta=beam_beta,
lang_model_path=lang_model_path,
vocab_list=vocab_list,
decoding_method=decoding_method)
return self.decoder.decode_probs(
probs.numpy(), probs_len, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
cutoff_top_n, num_processes)
@classmethod
def from_pretrained(cls, dataloader, config, checkpoint_path):
"""Build a DeepSpeech2Model model from a pretrained model.
......
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
jit_model_export_path=$2
model_type=$3
# download language model
bash local/download_lm_ch.sh
if [ $? -ne 0 ]; then
exit 1
fi
python3 -u ${BIN_DIR}/test_export.py \
--device ${device} \
--nproc 1 \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--export_path ${jit_model_export_path} \
--model_type ${model_type}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
exit 0
......@@ -39,3 +39,8 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test_export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}|| exit -1
fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册