提交 b2cf96cc 编写于 作者: Y Yibing Liu

adapt to the new data provider

......@@ -16,34 +16,48 @@ For some machines, we also need to install libsndfile1. Details to be added.
### Preparing Data
```
cd data
python librispeech.py
cat manifest.libri.train-* > manifest.libri.train-all
cd datasets
sh run_all.sh
cd ..
```
After running librispeech.py, we have several "manifest" json files named with a prefix `manifest.libri.`. A manifest file summarizes a speech data set, with each line containing the meta data (i.e. audio filepath, transcription text, audio duration) of each audio file within the data set, in json format.
`sh run_all.sh` prepares all ASR datasets (currently, only LibriSpeech available). After running, we have several summarization manifest files in json-format.
By `cat manifest.libri.train-* > manifest.libri.train-all`, we simply merge the three seperate sample sets of LibriSpeech (train-clean-100, train-clean-360, train-other-500) into one training set. This is a simple way for merging different data sets.
A manifest file summarizes a speech data set, with each line containing the meta data (i.e. audio filepath, transcript text, audio duration) of each audio file within the data set, in json format. Manifest file serves as an interface informing our system of where and what to read the speech samples.
More help for arguments:
```
python datasets/librispeech/librispeech.py --help
```
### Preparing for Training
```
python compute_mean_std.py
```
`python compute_mean_std.py` computes mean and stdandard deviation for audio features, and save them to a file with a default name `./mean_std.npz`. This file will be used in both training and inferencing.
More help for arguments:
```
python librispeech.py --help
python compute_mean_std.py --help
```
### Traininig
### Training
For GPU Training:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --trainer_count 4 --train_manifest_path ./data/manifest.libri.train-all
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --trainer_count 4
```
For CPU Training:
```
python train.py --trainer_count 8 --use_gpu False -- train_manifest_path ./data/manifest.libri.train-all
python train.py --trainer_count 8 --use_gpu False
```
More help for arguments:
......@@ -55,7 +69,7 @@ python train.py --help
### Inferencing
```
python infer.py
CUDA_VISIBLE_DEVICES=0 python infer.py
```
More help for arguments:
......
"""
Providing basic audio data preprocessing pipeline, and offering
both instance-level and batch-level data reader interfaces.
"""
import paddle.v2 as paddle
import logging
import json
import random
import soundfile
import numpy as np
import os
RANDOM_SEED = 0
logger = logging.getLogger(__name__)
class DataGenerator(object):
"""
DataGenerator provides basic audio data preprocessing pipeline, and offers
both instance-level and batch-level data reader interfaces.
Normalized FFT are used as audio features here.
:param vocab_filepath: Vocabulary file path for indexing tokenized
transcriptions.
:type vocab_filepath: basestring
:param normalizer_manifest_path: Manifest filepath for collecting feature
normalization statistics, e.g. mean, std.
:type normalizer_manifest_path: basestring
:param normalizer_num_samples: Number of instances sampled for collecting
feature normalization statistics.
Default is 100.
:type normalizer_num_samples: int
:param max_duration: Audio clips with duration (in seconds) greater than
this will be discarded. Default is 20.0.
:type max_duration: float
:param min_duration: Audio clips with duration (in seconds) smaller than
this will be discarded. Default is 0.0.
:type min_duration: float
:param stride_ms: Striding size (in milliseconds) for generating frames.
Default is 10.0.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for frames. Default is 20.0.
:type window_ms: float
:param max_frequency: Maximun frequency for FFT features. FFT features of
frequency larger than this will be discarded.
If set None, all features will be kept.
Default is None.
:type max_frequency: float
"""
def __init__(self,
vocab_filepath,
normalizer_manifest_path,
normalizer_num_samples=100,
max_duration=20.0,
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_frequency=None):
self.__max_duration__ = max_duration
self.__min_duration__ = min_duration
self.__stride_ms__ = stride_ms
self.__window_ms__ = window_ms
self.__max_frequency__ = max_frequency
self.__random__ = random.Random(RANDOM_SEED)
# load vocabulary (dictionary)
self.__vocab_dict__, self.__vocab_list__ = \
self.__load_vocabulary_from_file__(vocab_filepath)
# collect normalizer statistics
self.__mean__, self.__std__ = self.__collect_normalizer_statistics__(
manifest_path=normalizer_manifest_path,
num_samples=normalizer_num_samples)
def __audio_featurize__(self, audio_filename):
"""
Preprocess audio data, including feature extraction, normalization etc..
"""
features = self.__audio_basic_featurize__(audio_filename)
return self.__normalize__(features)
def __text_featurize__(self, text):
"""
Preprocess text data, including tokenizing and token indexing etc..
"""
return self.__convert_text_to_char_index__(
text=text, vocabulary=self.__vocab_dict__)
def __audio_basic_featurize__(self, audio_filename):
"""
Compute basic (without normalization etc.) features for audio data.
"""
return self.__spectrogram_from_file__(
filename=audio_filename,
stride_ms=self.__stride_ms__,
window_ms=self.__window_ms__,
max_freq=self.__max_frequency__)
def __collect_normalizer_statistics__(self, manifest_path, num_samples=100):
"""
Compute feature normalization statistics, i.e. mean and stddev.
"""
# read manifest
manifest = self.__read_manifest__(
manifest_path=manifest_path,
max_duration=self.__max_duration__,
min_duration=self.__min_duration__)
# sample for statistics
sampled_manifest = self.__random__.sample(manifest, num_samples)
# extract spectrogram feature
features = []
for instance in sampled_manifest:
spectrogram = self.__audio_basic_featurize__(
instance["audio_filepath"])
features.append(spectrogram)
features = np.hstack(features)
mean = np.mean(features, axis=1).reshape([-1, 1])
std = np.std(features, axis=1).reshape([-1, 1])
return mean, std
def __normalize__(self, features, eps=1e-14):
"""
Normalize features to be of zero mean and unit stddev.
"""
return (features - self.__mean__) / (self.__std__ + eps)
def __spectrogram_from_file__(self,
filename,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
eps=1e-14):
"""
Laod audio data and calculate the log of spectrogram by FFT.
Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech
"""
audio, sample_rate = soundfile.read(filename)
if audio.ndim >= 2:
audio = np.mean(audio, 1)
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
spectrogram, freqs = self.__extract_spectrogram__(
audio,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.log(spectrogram[:ind, :] + eps)
def __extract_spectrogram__(self, samples, window_size, stride_size,
sample_rate):
"""
Compute the spectrogram by FFT for a discrete real signal.
Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech
"""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
fft = np.absolute(fft)**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
def __load_vocabulary_from_file__(self, vocabulary_path):
"""
Load vocabulary from file.
"""
if not os.path.exists(vocabulary_path):
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
vocab_lines = []
with open(vocabulary_path, 'r') as file:
vocab_lines.extend(file.readlines())
vocab_list = [line[:-1] for line in vocab_lines]
vocab_dict = dict(
[(token, id) for (id, token) in enumerate(vocab_list)])
return vocab_dict, vocab_list
def __convert_text_to_char_index__(self, text, vocabulary):
"""
Convert text string to a list of character index integers.
"""
return [vocabulary[w] for w in text]
def __read_manifest__(self, manifest_path, max_duration, min_duration):
"""
Load and parse manifest file.
"""
manifest = []
for json_line in open(manifest_path):
try:
json_data = json.loads(json_line)
except Exception as e:
raise ValueError("Error reading manifest: %s" % str(e))
if (json_data["duration"] <= max_duration and
json_data["duration"] >= min_duration):
manifest.append(json_data)
return manifest
def __padding_batch__(self, batch, padding_to=-1, flatten=False):
"""
Padding audio part of features (only in the time axis -- column axis)
with zeros, to make each instance in the batch share the same
audio feature shape.
If `padding_to` is set -1, the maximun column numbers in the batch will
be used as the target size. Otherwise, `padding_to` will be the target
size. Default is -1.
If `flatten` is set True, audio data will be flatten to be a 1-dim
ndarray. Default is False.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be greater"
" or equal to the original instance length.")
max_length = padding_to
# padding
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
new_batch.append((padded_audio, text))
return new_batch
def instance_reader_creator(self,
manifest_path,
sort_by_duration=True,
shuffle=False):
"""
Instance reader creator for audio data. Creat a callable function to
produce instances of data.
Instance: a tuple of a numpy ndarray of audio spectrogram and a list of
tokenized and indexed transcription text.
:param manifest_path: Filepath of manifest for audio clip files.
:type manifest_path: basestring
:param sort_by_duration: Sort the audio clips by duration if set True
(for SortaGrad).
:type sort_by_duration: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:return: Data reader function.
:rtype: callable
"""
if sort_by_duration and shuffle:
sort_by_duration = False
logger.warn("When shuffle set to true, "
"sort_by_duration is forced to set False.")
def reader():
# read manifest
manifest = self.__read_manifest__(
manifest_path=manifest_path,
max_duration=self.__max_duration__,
min_duration=self.__min_duration__)
# sort (by duration) or shuffle manifest
if sort_by_duration:
manifest.sort(key=lambda x: x["duration"])
if shuffle:
self.__random__.shuffle(manifest)
# extract spectrogram feature
for instance in manifest:
spectrogram = self.__audio_featurize__(
instance["audio_filepath"])
transcript = self.__text_featurize__(instance["text"])
yield (spectrogram, transcript)
return reader
def batch_reader_creator(self,
manifest_path,
batch_size,
padding_to=-1,
flatten=False,
sort_by_duration=True,
shuffle=False):
"""
Batch data reader creator for audio data. Creat a callable function to
produce batches of data.
Audio features will be padded with zeros to make each instance in the
batch to share the same audio feature shape.
:param manifest_path: Filepath of manifest for audio clip files.
:type manifest_path: basestring
:param batch_size: Instance number in a batch.
:type batch_size: int
:param padding_to: If set -1, the maximun column numbers in the batch
will be used as the target size for padding.
Otherwise, `padding_to` will be the target size.
Default is -1.
:type padding_to: int
:param flatten: If set True, audio data will be flatten to be a 1-dim
ndarray. Otherwise, 2-dim ndarray. Default is False.
:type flatten: bool
:param sort_by_duration: Sort the audio clips by duration if set True
(for SortaGrad).
:type sort_by_duration: bool
:param shuffle: Shuffle the audio clips if set True.
:type shuffle: bool
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def batch_reader():
instance_reader = self.instance_reader_creator(
manifest_path=manifest_path,
sort_by_duration=sort_by_duration,
shuffle=shuffle)
batch = []
for instance in instance_reader():
batch.append(instance)
if len(batch) == batch_size:
yield self.__padding_batch__(batch, padding_to, flatten)
batch = []
if len(batch) > 0:
yield self.__padding_batch__(batch, padding_to, flatten)
return batch_reader
def vocabulary_size(self):
"""
Get vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return len(self.__vocab_list__)
def vocabulary_dict(self):
"""
Get vocabulary in dict.
:return: Vocabulary in dict.
:rtype: dict
"""
return self.__vocab_dict__
def vocabulary_list(self):
"""
Get vocabulary in list.
:return: Vocabulary in list
:rtype: list
"""
return self.__vocab_list__
def data_name_feeding(self):
"""
Get feeddings (data field name and corresponding field id).
:return: Feeding dict.
:rtype: dict
"""
feeding = {
"audio_spectrogram": 0,
"transcript_text": 1,
}
return feeding
"""Compute mean and std for feature normalizer, and save to file."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from data_utils.normalizer import FeatureNormalizer
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.audio_featurizer import AudioFeaturizer
parser = argparse.ArgumentParser(
description='Computing mean and stddev for feature normalizer.')
parser.add_argument(
"--manifest_path",
default='datasets/manifest.train',
type=str,
help="Manifest path for computing normalizer's mean and stddev."
"(default: %(default)s)")
parser.add_argument(
"--num_samples",
default=2000,
type=int,
help="Number of samples for computing mean and stddev. "
"(default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='{}',
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
parser.add_argument(
"--output_file",
default='mean_std.npz',
type=str,
help="Filepath to write mean and std to (.npz)."
"(default: %(default)s)")
args = parser.parse_args()
def main():
augmentation_pipeline = AugmentationPipeline(args.augmentation_config)
audio_featurizer = AudioFeaturizer()
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=args.manifest_path,
featurize_func=augment_and_featurize,
num_samples=args.num_samples)
normalizer.write_to_file(args.output_file)
if __name__ == '__main__':
main()
"""Contains the audio segment class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import io
import soundfile
class AudioSegment(object):
"""Monaural audio segment abstraction.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:raises TypeError: If the sample data type is not float or int.
"""
def __init__(self, samples, sample_rate):
"""Create audio segment from samples.
Samples are convert float32 internally, with int scaled to [-1, 1].
"""
self._samples = self._convert_samples_to_float32(samples)
self._sample_rate = sample_rate
if self._samples.ndim >= 2:
self._samples = np.mean(self._samples, 1)
def __eq__(self, other):
"""Return whether two objects are equal."""
if type(other) is not type(self):
return False
if self._sample_rate != other._sample_rate:
return False
if self._samples.shape != other._samples.shape:
return False
if np.any(self.samples != other._samples):
return False
return True
def __ne__(self, other):
"""Return whether two objects are unequal."""
return not self.__eq__(other)
def __str__(self):
"""Return human-readable representation of segment."""
return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, "
"rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate,
self.duration, self.rms_db))
@classmethod
def from_file(cls, file):
"""Create audio segment from audio file.
:param filepath: Filepath or file object to audio file.
:type filepath: basestring|file
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(file, dtype='float32')
return cls(samples, sample_rate)
@classmethod
def from_bytes(cls, bytes):
"""Create audio segment from a byte string containing audio samples.
:param bytes: Byte string containing audio samples.
:type bytes: str
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(
io.BytesIO(bytes), dtype='float32')
return cls(samples, sample_rate)
def to_wav_file(self, filepath, dtype='float32'):
"""Save audio segment to disk as wav file.
:param filepath: WAV filepath or file object to save the
audio segment.
:type filepath: basestring|file
:param dtype: Subtype for audio file. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:raises TypeError: If dtype is not supported.
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
subtype_map = {
'int16': 'PCM_16',
'int32': 'PCM_32',
'float32': 'FLOAT',
'float64': 'DOUBLE'
}
soundfile.write(
filepath,
samples,
self._sample_rate,
format='WAV',
subtype=subtype_map[dtype])
def to_bytes(self, dtype='float32'):
"""Create a byte string containing the audio content.
:param dtype: Data type for export samples. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:return: Byte string containing audio content.
:rtype: str
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
return samples.tostring()
def apply_gain(self, gain):
"""Apply gain in decibels to samples.
Note that this is an in-place transformation.
:param gain: Gain in decibels to apply to samples.
:type gain: float
"""
self._samples *= 10.**(gain / 20.)
def change_speed(self, speed_rate):
"""Change the audio speed by linear interpolation.
Note that this is an in-place transformation.
:param speed_rate: Rate of speed change:
speed_rate > 1.0, speed up the audio;
speed_rate = 1.0, unchanged;
speed_rate < 1.0, slow down the audio;
speed_rate <= 0.0, not allowed, raise ValueError.
:type speed_rate: float
:raises ValueError: If speed_rate <= 0.0.
"""
if speed_rate <= 0:
raise ValueError("speed_rate should be greater than zero.")
old_length = self._samples.shape[0]
new_length = int(old_length / speed_rate)
old_indices = np.arange(old_length)
new_indices = np.linspace(start=0, stop=old_length, num=new_length)
self._samples = np.interp(new_indices, old_indices, self._samples)
def normalize(self, target_sample_rate):
raise NotImplementedError()
def resample(self, target_sample_rate):
raise NotImplementedError()
def pad_silence(self, duration, sides='both'):
raise NotImplementedError()
def subsegment(self, start_sec=None, end_sec=None):
raise NotImplementedError()
def convolve(self, filter, allow_resample=False):
raise NotImplementedError()
def convolve_and_normalize(self, filter, allow_resample=False):
raise NotImplementedError()
@property
def samples(self):
"""Return audio samples.
:return: Audio samples.
:rtype: ndarray
"""
return self._samples.copy()
@property
def sample_rate(self):
"""Return audio sample rate.
:return: Audio sample rate.
:rtype: int
"""
return self._sample_rate
@property
def num_samples(self):
"""Return number of samples.
:return: Number of samples.
:rtype: int
"""
return self._samples.shape(0)
@property
def duration(self):
"""Return audio duration.
:return: Audio duration in seconds.
:rtype: float
"""
return self._samples.shape[0] / float(self._sample_rate)
@property
def rms_db(self):
"""Return root mean square energy of the audio in decibels.
:return: Root mean square energy in decibels.
:rtype: float
"""
# square root => multiply by 10 instead of 20 for dBs
mean_square = np.mean(self._samples**2)
return 10 * np.log10(mean_square)
def _convert_samples_to_float32(self, samples):
"""Convert sample type to float32.
Audio sample type is usually integer or float-point.
Integers will be scaled to [-1, 1] in float32.
"""
float32_samples = samples.astype('float32')
if samples.dtype in np.sctypes['int']:
bits = np.iinfo(samples.dtype).bits
float32_samples *= (1. / 2**(bits - 1))
elif samples.dtype in np.sctypes['float']:
pass
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return float32_samples
def _convert_samples_from_float32(self, samples, dtype):
"""Convert sample type from float32 to dtype.
Audio sample type is usually integer or float-point. For integer
type, float32 will be rescaled from [-1, 1] to the maximum range
supported by the integer type.
This is for writing a audio file.
"""
dtype = np.dtype(dtype)
output_samples = samples.copy()
if dtype in np.sctypes['int']:
bits = np.iinfo(dtype).bits
output_samples *= (2**(bits - 1) / 1.)
min_val = np.iinfo(dtype).min
max_val = np.iinfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
elif samples.dtype in np.sctypes['float']:
min_val = np.finfo(dtype).min
max_val = np.finfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return output_samples.astype(dtype)
"""Contains the data augmentation pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import random
from data_utils.augmentor.volume_perturb import VolumePerturbAugmentor
class AugmentationPipeline(object):
"""Build a pre-processing pipeline with various augmentation models.Such a
data augmentation pipeline is oftern leveraged to augment the training
samples to make the model invariant to certain types of perturbations in the
real world, improving model's generalization ability.
The pipeline is built according the the augmentation configuration in json
string, e.g.
.. code-block::
'[{"type": "volume",
"params": {"min_gain_dBFS": -15,
"max_gain_dBFS": 15},
"prob": 0.5},
{"type": "speed",
"params": {"min_speed_rate": 0.8,
"max_speed_rate": 1.2},
"prob": 0.5}
]'
This augmentation configuration inserts two augmentation models
into the pipeline, with one is VolumePerturbAugmentor and the other
SpeedPerturbAugmentor. "prob" indicates the probability of the current
augmentor to take effect.
:param augmentation_config: Augmentation configuration in json string.
:type augmentation_config: str
:param random_seed: Random seed.
:type random_seed: int
:raises ValueError: If the augmentation json config is in incorrect format".
"""
def __init__(self, augmentation_config, random_seed=0):
self._rng = random.Random(random_seed)
self._augmentors, self._rates = self._parse_pipeline_from(
augmentation_config)
def transform_audio(self, audio_segment):
"""Run the pre-processing pipeline for data augmentation.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to process.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
for augmentor, rate in zip(self._augmentors, self._rates):
if self._rng.uniform(0., 1.) <= rate:
augmentor.transform_audio(audio_segment)
def _parse_pipeline_from(self, config_json):
"""Parse the config json to build a augmentation pipelien."""
try:
configs = json.loads(config_json)
augmentors = [
self._get_augmentor(config["type"], config["params"])
for config in configs
]
rates = [config["prob"] for config in configs]
except Exception as e:
raise ValueError("Failed to parse the augmentation config json: "
"%s" % str(e))
return augmentors, rates
def _get_augmentor(self, augmentor_type, params):
"""Return an augmentation model by the type name, and pass in params."""
if augmentor_type == "volume":
return VolumePerturbAugmentor(self._rng, **params)
else:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
"""Contains the abstract base class for augmentation models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta, abstractmethod
class AugmentorBase(object):
"""Abstract base class for augmentation model (augmentor) class.
All augmentor classes should inherit from this class, and implement the
following abstract methods.
"""
__metaclass__ = ABCMeta
@abstractmethod
def __init__(self):
pass
@abstractmethod
def transform_audio(self, audio_segment):
"""Adds various effects to the input audio segment. Such effects
will augment the training data to make the model invariant to certain
types of perturbations in the real world, improving model's
generalization ability.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
pass
"""Contains the volume perturb augmentation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.augmentor.base import AugmentorBase
class VolumePerturbAugmentor(AugmentorBase):
"""Augmentation model for adding random volume perturbation.
This is used for multi-loudness training of PCEN. See
https://arxiv.org/pdf/1607.05666v1.pdf
for more details.
:param rng: Random generator object.
:type rng: random.Random
:param min_gain_dBFS: Minimal gain in dBFS.
:type min_gain_dBFS: float
:param max_gain_dBFS: Maximal gain in dBFS.
:type max_gain_dBFS: float
"""
def __init__(self, rng, min_gain_dBFS, max_gain_dBFS):
self._min_gain_dBFS = min_gain_dBFS
self._max_gain_dBFS = max_gain_dBFS
self._rng = rng
def transform_audio(self, audio_segment):
"""Change audio loadness.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
gain = self._rng.uniform(min_gain_dBFS, max_gain_dBFS)
audio_segment.apply_gain(gain)
"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
import paddle.v2 as paddle
from data_utils import utils
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
from data_utils.speech import SpeechSegment
from data_utils.normalizer import FeatureNormalizer
class DataGenerator(object):
"""
DataGenerator provides basic audio data preprocessing pipeline, and offers
data reader interfaces of PaddlePaddle requirements.
:param vocab_filepath: Vocabulary filepath for indexing tokenized
transcripts.
:type vocab_filepath: basestring
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|basestring
:param augmentation_config: Augmentation configuration in json string.
Details see AugmentationPipeline.__doc__.
:type augmentation_config: str
:param max_duration: Audio with duration (in seconds) greater than
this will be discarded.
:type max_duration: float
:param min_duration: Audio with duration (in seconds) smaller than
this will be discarded.
:type min_duration: float
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param random_seed: Random seed.
:type random_seed: int
"""
def __init__(self,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
random_seed=0):
self._max_duration = max_duration
self._min_duration = min_duration
self._normalizer = FeatureNormalizer(mean_std_filepath)
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
vocab_filepath=vocab_filepath,
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq)
self._rng = random.Random(random_seed)
self._epoch = 0
def batch_reader_creator(self,
manifest_path,
batch_size,
min_batch_size=1,
padding_to=-1,
flatten=False,
sortagrad=False,
shuffle_method="batch_shuffle"):
"""
Batch data reader creator for audio data. Return a callable generator
function to produce batches of data.
Audio features within one batch will be padded with zeros to have the
same shape, or a user-defined shape.
:param manifest_path: Filepath of manifest for audio files.
:type manifest_path: basestring
:param batch_size: Number of instances in a batch.
:type batch_size: int
:param min_batch_size: Any batch with batch size smaller than this will
be discarded. (To be deprecated in the future.)
:type min_batch_size: int
:param padding_to: If set -1, the maximun shape in the batch
will be used as the target shape for padding.
Otherwise, `padding_to` will be the target shape.
:type padding_to: int
:param flatten: If set True, audio features will be flatten to 1darray.
:type flatten: bool
:param sortagrad: If set True, sort the instances by audio duration
in the first epoch for speed up training.
:type sortagrad: bool
:param shuffle_method: Shuffle method. Options:
'' or None: no shuffle.
'instance_shuffle': instance-wise shuffle.
'batch_shuffle': similarly-sized instances are
put into batches, and then
batch-wise shuffle the batches.
For more details, please see
``_batch_shuffle.__doc__``.
'batch_shuffle_clipped': 'batch_shuffle' with
head shift and tail
clipping. For more
details, please see
``_batch_shuffle``.
If sortagrad is True, shuffle is disabled
for the first epoch.
:type shuffle_method: None|str
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def batch_reader():
# read manifest
manifest = utils.read_manifest(
manifest_path=manifest_path,
max_duration=self._max_duration,
min_duration=self._min_duration)
# sort (by duration) or batch-wise shuffle the manifest
if self._epoch == 0 and sortagrad:
manifest.sort(key=lambda x: x["duration"])
else:
if shuffle_method == "batch_shuffle":
manifest = self._batch_shuffle(
manifest, batch_size, clipped=False)
elif shuffle_method == "batch_shuffle_clipped":
manifest = self._batch_shuffle(
manifest, batch_size, clipped=True)
elif shuffle_method == "instance_shuffle":
self._rng.shuffle(manifest)
elif not shuffle_method:
pass
else:
raise ValueError("Unknown shuffle method %s." %
shuffle_method)
# prepare batches
instance_reader = self._instance_reader_creator(manifest)
batch = []
for instance in instance_reader():
batch.append(instance)
if len(batch) == batch_size:
yield self._padding_batch(batch, padding_to, flatten)
batch = []
if len(batch) >= min_batch_size:
yield self._padding_batch(batch, padding_to, flatten)
self._epoch += 1
return batch_reader
@property
def feeding(self):
"""Returns data reader's feeding dict.
:return: Data feeding dict.
:rtype: dict
"""
return {"audio_spectrogram": 0, "transcript_text": 1}
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._speech_featurizer.vocab_list
def _process_utterance(self, filename, transcript):
"""Load, augment, featurize and normalize for speech data."""
speech_segment = SpeechSegment.from_file(filename, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
specgram = self._normalizer.apply(specgram)
return specgram, text_ids
def _instance_reader_creator(self, manifest):
"""
Instance reader creator. Create a callable function to produce
instances of data.
Instance: a tuple of ndarray of audio spectrogram and a list of
token indices for transcript.
"""
def reader():
for instance in manifest:
yield self._process_utterance(instance["audio_filepath"],
instance["text"])
return reader
def _padding_batch(self, batch, padding_to=-1, flatten=False):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
# padding
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
new_batch.append((padded_audio, text))
return new_batch
def _batch_shuffle(self, manifest, batch_size, clipped=False):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly shift `k` instances in order to create different batches
for different epochs. Create minibatches.
4. Shuffle the minibatches.
:param manifest: Manifest contents. List of dict.
:type manifest: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:param clipped: Whether to clip the heading (small shift) and trailing
(incomplete batch) instances.
:type clipped: bool
:return: Batch shuffled mainifest.
:rtype: list
"""
manifest.sort(key=lambda x: x["duration"])
shift_len = self._rng.randint(0, batch_size - 1)
batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size)
self._rng.shuffle(batch_manifest)
batch_manifest = list(sum(batch_manifest, ()))
if not clipped:
res_len = len(manifest) - shift_len - len(batch_manifest)
batch_manifest.extend(manifest[-res_len:])
batch_manifest.extend(manifest[0:shift_len])
return batch_manifest
"""Contains the audio featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from data_utils import utils
from data_utils.audio import AudioSegment
class AudioFeaturizer(object):
"""Audio featurizer, for extracting features from audio contents of
AudioSegment or SpeechSegment.
Currently, it only supports feature type of linear spectrogram.
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
"""
def __init__(self,
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
max_freq=None):
self._specgram_type = specgram_type
self._stride_ms = stride_ms
self._window_ms = window_ms
self._max_freq = max_freq
def featurize(self, audio_segment):
"""Extract audio features from AudioSegment or SpeechSegment.
:param audio_segment: Audio/speech segment to extract features from.
:type audio_segment: AudioSegment|SpeechSegment
:return: Spectrogram audio feature in 2darray.
:rtype: ndarray
"""
return self._compute_specgram(audio_segment.samples,
audio_segment.sample_rate)
def _compute_specgram(self, samples, sample_rate):
"""Extract various audio features."""
if self._specgram_type == 'linear':
return self._compute_linear_specgram(
samples, sample_rate, self._stride_ms, self._window_ms,
self._max_freq)
else:
raise ValueError("Unknown specgram_type %s. "
"Supported values: linear." % self._specgram_type)
def _compute_linear_specgram(self,
samples,
sample_rate,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
eps=1e-14):
"""Compute the linear spectrogram from FFT energy."""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
specgram, freqs = self._specgram_real(
samples,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.log(specgram[:ind, :] + eps)
def _specgram_real(self, samples, window_size, stride_size, sample_rate):
"""Compute the spectrogram for samples from a real signal."""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
fft = np.absolute(fft)**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
"""Contains the speech featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.featurizer.audio_featurizer import AudioFeaturizer
from data_utils.featurizer.text_featurizer import TextFeaturizer
class SpeechFeaturizer(object):
"""Speech featurizer, for extracting features from both audio and transcript
contents of SpeechSegment.
Currently, for audio parts, it only supports feature type of linear
spectrogram; for transcript parts, it only supports char-level tokenizing
and conversion into a list of token indices. Note that the token indexing
order follows the given vocabulary file.
:param vocab_filepath: Filepath to load vocabulary for token indices
conversion.
:type specgram_type: basestring
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
"""
def __init__(self,
vocab_filepath,
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
max_freq=None):
self._audio_featurizer = AudioFeaturizer(specgram_type, stride_ms,
window_ms, max_freq)
self._text_featurizer = TextFeaturizer(vocab_filepath)
def featurize(self, speech_segment):
"""Extract features for speech segment.
1. For audio parts, extract the audio features.
2. For transcript parts, convert text string to a list of token indices
in char-level.
:param audio_segment: Speech segment to extract features from.
:type audio_segment: SpeechSegment
:return: A tuple of 1) spectrogram audio feature in 2darray, 2) list of
char-level token indices.
:rtype: tuple
"""
audio_feature = self._audio_featurizer.featurize(speech_segment)
text_ids = self._text_featurizer.featurize(speech_segment.transcript)
return audio_feature, text_ids
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._text_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._text_featurizer.vocab_list
"""Contains the text featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
class TextFeaturizer(object):
"""Text featurizer, for processing or extracting features from text.
Currently, it only supports char-level tokenizing and conversion into
a list of token indices. Note that the token indexing order follows the
given vocabulary file.
:param vocab_filepath: Filepath to load vocabulary for token indices
conversion.
:type specgram_type: basestring
"""
def __init__(self, vocab_filepath):
self._vocab_dict, self._vocab_list = self._load_vocabulary_from_file(
vocab_filepath)
def featurize(self, text):
"""Convert text string to a list of token indices in char-level.Note
that the token indexing order follows the given vocabulary file.
:param text: Text to process.
:type text: basestring
:return: List of char-level token indices.
:rtype: list
"""
tokens = self._char_tokenize(text)
return [self._vocab_dict[token] for token in tokens]
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return len(self._vocab_list)
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._vocab_list
def _char_tokenize(self, text):
"""Character tokenizer."""
return list(text.strip())
def _load_vocabulary_from_file(self, vocab_filepath):
"""Load vocabulary from file."""
vocab_lines = []
with open(vocab_filepath, 'r') as file:
vocab_lines.extend(file.readlines())
vocab_list = [line[:-1] for line in vocab_lines]
vocab_dict = dict(
[(token, id) for (id, token) in enumerate(vocab_list)])
return vocab_dict, vocab_list
"""Contains feature normalizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import data_utils.utils as utils
from data_utils.audio import AudioSegment
class FeatureNormalizer(object):
"""Feature normalizer. Normalize features to be of zero mean and unit
stddev.
if mean_std_filepath is provided (not None), the normalizer will directly
initilize from the file. Otherwise, both manifest_path and featurize_func
should be given for on-the-fly mean and stddev computing.
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|basestring
:param manifest_path: Manifest of instances for computing mean and stddev.
:type meanifest_path: None|basestring
:param featurize_func: Function to extract features. It should be callable
with ``featurize_func(audio_segment)``.
:type featurize_func: None|callable
:param num_samples: Number of random samples for computing mean and stddev.
:type num_samples: int
:param random_seed: Random seed for sampling instances.
:type random_seed: int
:raises ValueError: If both mean_std_filepath and manifest_path
(or both mean_std_filepath and featurize_func) are None.
"""
def __init__(self,
mean_std_filepath,
manifest_path=None,
featurize_func=None,
num_samples=500,
random_seed=0):
if not mean_std_filepath:
if not (manifest_path and featurize_func):
raise ValueError("If mean_std_filepath is None, meanifest_path "
"and featurize_func should not be None.")
self._rng = random.Random(random_seed)
self._compute_mean_std(manifest_path, featurize_func, num_samples)
else:
self._read_mean_std_from_file(mean_std_filepath)
def apply(self, features, eps=1e-14):
"""Normalize features to be of zero mean and unit stddev.
:param features: Input features to be normalized.
:type features: ndarray
:param eps: added to stddev to provide numerical stablibity.
:type eps: float
:return: Normalized features.
:rtype: ndarray
"""
return (features - self._mean) / (self._std + eps)
def write_to_file(self, filepath):
"""Write the mean and stddev to the file.
:param filepath: File to write mean and stddev.
:type filepath: basestring
"""
np.savez(filepath, mean=self._mean, std=self._std)
def _read_mean_std_from_file(self, filepath):
"""Load mean and std from file."""
npzfile = np.load(filepath)
self._mean = npzfile["mean"]
self._std = npzfile["std"]
def _compute_mean_std(self, manifest_path, featurize_func, num_samples):
"""Compute mean and std from randomly sampled instances."""
manifest = utils.read_manifest(manifest_path)
sampled_manifest = self._rng.sample(manifest, num_samples)
features = []
for instance in sampled_manifest:
features.append(
featurize_func(
AudioSegment.from_file(instance["audio_filepath"])))
features = np.hstack(features)
self._mean = np.mean(features, axis=1).reshape([-1, 1])
self._std = np.std(features, axis=1).reshape([-1, 1])
"""Contains the speech segment class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.audio import AudioSegment
class SpeechSegment(AudioSegment):
"""Speech segment abstraction, a subclass of AudioSegment,
with an additional transcript.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:param transcript: Transcript text for the speech.
:type transript: basestring
:raises TypeError: If the sample data type is not float or int.
"""
def __init__(self, samples, sample_rate, transcript):
AudioSegment.__init__(self, samples, sample_rate)
self._transcript = transcript
def __eq__(self, other):
"""Return whether two objects are equal.
"""
if not AudioSegment.__eq__(self, other):
return False
if self._transcript != other._transcript:
return False
return True
def __ne__(self, other):
"""Return whether two objects are unequal."""
return not self.__eq__(other)
@classmethod
def from_file(cls, filepath, transcript):
"""Create speech segment from audio file and corresponding transcript.
:param filepath: Filepath or file object to audio file.
:type filepath: basestring|file
:param transcript: Transcript text for the speech.
:type transript: basestring
:return: Audio segment instance.
:rtype: AudioSegment
"""
audio = AudioSegment.from_file(filepath)
return cls(audio.samples, audio.sample_rate, transcript)
@classmethod
def from_bytes(cls, bytes, transcript):
"""Create speech segment from a byte string and corresponding
transcript.
:param bytes: Byte string containing audio samples.
:type bytes: str
:param transcript: Transcript text for the speech.
:type transript: basestring
:return: Audio segment instance.
:rtype: AudioSegment
"""
audio = AudioSegment.from_bytes(bytes)
return cls(audio.samples, audio.sample_rate, transcript)
@property
def transcript(self):
"""Return the transcript text.
:return: Transcript text for the speech.
:rtype: basestring
"""
return self._transcript
"""Contains data helper functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
def read_manifest(manifest_path, max_duration=float('inf'), min_duration=0.0):
"""Load and parse manifest file.
Instances with durations outside [min_duration, max_duration] will be
filtered out.
:param manifest_path: Manifest file to load and parse.
:type manifest_path: basestring
:param max_duration: Maximal duration in seconds for instance filter.
:type max_duration: float
:param min_duration: Minimal duration in seconds for instance filter.
:type min_duration: float
:return: Manifest parsing results. List of dict.
:rtype: list
:raises IOError: If failed to parse the manifest.
"""
manifest = []
for json_line in open(manifest_path):
try:
json_data = json.loads(json_line)
except Exception as e:
raise IOError("Error reading manifest: %s" % str(e))
if (json_data["duration"] <= max_duration and
json_data["duration"] >= min_duration):
manifest.append(json_data)
return manifest
"""
Download, unpack and create manifest json files for the Librespeech dataset.
"""Prepare Librispeech ASR datasets.
A manifest is a json file summarizing filelist in a data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file in the data set.
Download, unpack and create manifest files.
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
of each audio file in the data set.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
from paddle.v2.dataset.common import md5file
import distutils.util
import os
import wget
......@@ -15,6 +16,7 @@ import tarfile
import argparse
import soundfile
import json
from paddle.v2.dataset.common import md5file
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
......@@ -35,8 +37,7 @@ MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
parser = argparse.ArgumentParser(
description='Downloads and prepare LibriSpeech dataset.')
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--target_dir",
default=DATA_HOME + "/Libri",
......@@ -44,7 +45,7 @@ parser.add_argument(
help="Directory to save the dataset. (default: %(default)s)")
parser.add_argument(
"--manifest_prefix",
default="manifest.libri",
default="manifest",
type=str,
help="Filepath prefix for output manifests. (default: %(default)s)")
parser.add_argument(
......
cd librispeech
python librispeech.py
if [ $? -ne 0 ]; then
echo "Prepare LibriSpeech failed. Terminated."
exit 1
fi
cd -
cat librispeech/manifest.train* | shuf > manifest.train
cat librispeech/manifest.dev-clean > manifest.dev
cat librispeech/manifest.test-clean > manifest.test
echo "All done."
"""
CTC-like decoder utilitis.
"""
"""Contains various CTC decoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from itertools import groupby
......@@ -10,8 +11,7 @@ import multiprocessing
def ctc_best_path_decode(probs_seq, vocabulary):
"""
Best path decoding, also called argmax decoding or greedy decoding.
"""Best path decoding, also called argmax decoding or greedy decoding.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
......@@ -40,8 +40,7 @@ def ctc_best_path_decode(probs_seq, vocabulary):
class Scorer(object):
"""
External defined scorer to evaluate a sentence in beam search
"""External defined scorer to evaluate a sentence in beam search
decoding, consisting of language model and word count.
:param alpha: Parameter associated with language model.
......@@ -73,8 +72,7 @@ class Scorer(object):
# execute evaluation
def __call__(self, sentence, log=False):
"""
Evaluation function
"""Evaluation function, gathering all the scores.
:param sentence: The input sentence for evalutation
:type sentence: basestring
......@@ -101,8 +99,7 @@ def ctc_beam_search_decoder(probs_seq,
cutoff_prob=1.0,
ext_scoring_func=None,
nproc=False):
'''
Beam search decoder for CTC-trained network, using beam search with width
'''Beam search decoder for CTC-trained network, using beam search with width
beam_size to find many paths to one label, return beam_size labels in
the descending order of probabilities. The implementation is based on Prefix
Beam Search(https://arxiv.org/abs/1408.2873), and the unclear part is
......@@ -129,7 +126,6 @@ def ctc_beam_search_decoder(probs_seq,
:type nproc: bool
:return: Decoding log probabilities and result sentences in descending order.
:rtype: list
'''
# dimension check
for prob_list in probs_seq:
......@@ -242,8 +238,7 @@ def ctc_beam_search_decoder_nproc(probs_split,
cutoff_prob=1.0,
ext_scoring_func=None,
num_processes=None):
'''
Beam search decoder using multiple processes.
'''Beam search decoder using multiple processes.
:param probs_seq: 3-D list with length batch_size, each element
is a 2-D list of probabilities can be used by
......
# -*- coding: utf-8 -*-
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def _levenshtein_distance(ref, hyp):
"""Levenshtein distance is a string metric for measuring the difference between
two sequences. Informally, the levenshtein disctance is defined as the minimum
number of single-character edits (substitutions, insertions or deletions)
required to change one word into the other. We can naturally extend the edits to
word level when calculate levenshtein disctance for two sentences.
"""
ref_len = len(ref)
hyp_len = len(hyp)
# special case
if ref == hyp:
return 0
if ref_len == 0:
return hyp_len
if hyp_len == 0:
return ref_len
distance = np.zeros((ref_len + 1, hyp_len + 1), dtype=np.int32)
# initialize distance matrix
for j in xrange(hyp_len + 1):
distance[0][j] = j
for i in xrange(ref_len + 1):
distance[i][0] = i
# calculate levenshtein distance
for i in xrange(1, ref_len + 1):
for j in xrange(1, hyp_len + 1):
if ref[i - 1] == hyp[j - 1]:
distance[i][j] = distance[i - 1][j - 1]
else:
s_num = distance[i - 1][j - 1] + 1
i_num = distance[i][j - 1] + 1
d_num = distance[i - 1][j] + 1
distance[i][j] = min(s_num, i_num, d_num)
return distance[ref_len][hyp_len]
def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Calculate word error rate (WER). WER compares reference text and
hypothesis text in word-level. WER is defined as:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention that
empty items will be removed when splitting sentences by delimiter.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:return: Word error rate.
:rtype: float
:raises ValueError: If the reference length is zero.
"""
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()
ref_words = filter(None, reference.split(delimiter))
hyp_words = filter(None, hypothesis.split(delimiter))
if len(ref_words) == 0:
raise ValueError("Reference's word number should be greater than 0.")
edit_distance = _levenshtein_distance(ref_words, hyp_words)
wer = float(edit_distance) / len(ref_words)
return wer
def cer(reference, hypothesis, ignore_case=False):
"""Calculate charactor error rate (CER). CER compares reference text and
hypothesis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of characters substituted,
Dc is the number of characters deleted,
Ic is the number of characters inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode. Please draw an attention that the leading and tailing
white space characters will be truncated and multiple consecutive white
space characters in a sentence will be replaced by one white space character.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:return: Character error rate.
:rtype: float
:raises ValueError: If the reference length is zero.
"""
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()
reference = ' '.join(filter(None, reference.split(' ')))
hypothesis = ' '.join(filter(None, hypothesis.split(' ')))
if len(reference) == 0:
raise ValueError("Length of reference should be greater than 0.")
edit_distance = _levenshtein_distance(reference, hypothesis)
cer = float(edit_distance) / len(reference)
return cer
"""
Evaluation for a simplifed version of Baidu DeepSpeech2 model.
"""
"""Evaluation for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
import distutils.util
import argparse
import gzip
from audio_data_utils import DataGenerator
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from error_rate import wer
parser = argparse.ArgumentParser(
description='Simplified version of DeepSpeech2 evaluation.')
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--num_samples",
default=100,
......@@ -38,6 +38,11 @@ parser.add_argument(
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--decode_method",
default='beam_search_nproc',
......@@ -46,7 +51,7 @@ parser.add_argument(
"beam_search or beam_search_nproc. (default: %(default)s)")
parser.add_argument(
"--language_model_path",
default="./data/1Billion.klm",
default="data/1Billion.klm",
type=str,
help="Path for language model. (default: %(default)s)")
parser.add_argument(
......@@ -87,41 +92,34 @@ parser.add_argument(
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='data/eng_vocab.txt',
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
args = parser.parse_args()
def evaluate():
"""
Evaluate on whole test data for DeepSpeech2.
"""
"""Evaluate on whole test data for DeepSpeech2."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
normalizer_manifest_path=args.normalizer_manifest_path,
normalizer_num_samples=200,
max_duration=20.0,
min_duration=0.0,
stride_ms=10,
window_ms=20)
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}')
# create network config
dict_size = data_generator.vocabulary_size()
vocab_list = data_generator.vocabulary_list()
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
height=161,
width=2000,
type=paddle.data_type.dense_vector(322000))
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(dict_size))
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=dict_size,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
......@@ -132,14 +130,11 @@ def evaluate():
gzip.open(args.model_filepath))
# prepare infer data
feeding = data_generator.data_name_feeding()
test_batch_reader = data_generator.batch_reader_creator(
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
padding_to=2000,
flatten=True,
sort_by_duration=False,
shuffle=False)
sortagrad=False,
shuffle_method=None)
# define inferer
inferer = paddle.inference.Inference(
......@@ -151,10 +146,10 @@ def evaluate():
ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
wer_counter, wer_sum = 0, 0.0
for infer_data in test_batch_reader():
for infer_data in batch_reader():
# run inference
infer_results = inferer.infer(input=infer_data)
num_steps = len(infer_results) / len(infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
......@@ -164,22 +159,26 @@ def evaluate():
# best path decode
if args.decode_method == "best_path":
for i, probs in enumerate(probs_split):
output_transcription = ctc_decode(
probs_seq=probs, vocabulary=vocab_list, method="best_path")
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
output_transcription = ctc_best_path_decode(
probs_seq=probs, vocabulary=data_generator.vocab_list)
target_transcription = ''.join([
data_generator.vocab_list[index]
for index in infer_data[i][1]
])
wer_sum += wer(target_transcription, output_transcription)
wer_counter += 1
# beam search decode in single process
elif args.decode_method == "beam_search":
for i, probs in enumerate(probs_split):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index]
for index in infer_data[i][1]
])
beam_search_result = ctc_beam_search_decoder(
probs_seq=probs,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
ext_scoring_func=ext_scorer,
cutoff_prob=args.cutoff_prob, )
wer_sum += wer(target_transcription, beam_search_result[0][1])
......@@ -188,18 +187,21 @@ def evaluate():
elif args.decode_method == "beam_search_nproc":
beam_search_nproc_results = ctc_beam_search_decoder_nproc(
probs_split=probs_split,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
ext_scoring_func=ext_scorer,
cutoff_prob=args.cutoff_prob, )
for i, beam_search_result in enumerate(beam_search_nproc_results):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index]
for index in infer_data[i][1]
])
wer_sum += wer(target_transcription, beam_search_result[0][1])
wer_counter += 1
else:
raise ValueError("Decoding method [%s] is not supported." % method)
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
print("Cur WER = %f" % (wer_sum / wer_counter))
print("Final WER = %f" % (wer_sum / wer_counter))
......
"""
Inference for a simplifed version of Baidu DeepSpeech2 model.
"""
"""Inferer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
import distutils.util
import argparse
import gzip
from audio_data_utils import DataGenerator
import distutils.util
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from error_rate import wer
import time
import utils
parser = argparse.ArgumentParser(
description='Simplified version of DeepSpeech2 inference.')
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--num_samples",
default=100,
......@@ -40,8 +40,8 @@ parser.add_argument(
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--normalizer_manifest_path",
default='data/manifest.libri.train-clean-100',
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
......@@ -56,12 +56,12 @@ parser.add_argument(
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='data/eng_vocab.txt',
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
"--decode_method",
default='beam_search_nproc',
default='best_path',
type=str,
help="Method for ctc decoding:"
" best_path,"
......@@ -79,7 +79,7 @@ parser.add_argument(
help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
"--language_model_path",
default="./data/1Billion.klm",
default="data/1Billion.klm",
type=str,
help="Path for language model. (default: %(default)s)")
parser.add_argument(
......@@ -102,34 +102,26 @@ args = parser.parse_args()
def infer():
"""
Inference for DeepSpeech2.
"""
"""Inference for DeepSpeech2."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
normalizer_manifest_path=args.normalizer_manifest_path,
normalizer_num_samples=200,
max_duration=20.0,
min_duration=0.0,
stride_ms=10,
window_ms=20)
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}')
# create network config
dict_size = data_generator.vocabulary_size()
vocab_list = data_generator.vocabulary_list()
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
height=161,
width=2000,
type=paddle.data_type.dense_vector(322000))
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(dict_size))
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=dict_size,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
......@@ -140,23 +132,20 @@ def infer():
gzip.open(args.model_filepath))
# prepare infer data
feeding = data_generator.data_name_feeding()
test_batch_reader = data_generator.batch_reader_creator(
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
padding_to=2000,
flatten=True,
sort_by_duration=False,
shuffle=False)
infer_data = test_batch_reader().next()
sortagrad=False,
shuffle_method=None)
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) / len(infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
for i in xrange(len(infer_data))
]
## decode and print
......@@ -165,10 +154,11 @@ def infer():
total_time = 0.0
if args.decode_method == "best_path":
for i, probs in enumerate(probs_split):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index] for index in infer_data[i][1]
])
best_path_transcription = ctc_best_path_decode(
probs_seq=probs, vocabulary=vocab_list)
probs_seq=probs, vocabulary=data_generator.vocab_list)
print("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target_transcription, best_path_transcription))
wer_cur = wer(target_transcription, best_path_transcription)
......@@ -180,13 +170,14 @@ def infer():
elif args.decode_method == "beam_search":
ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
for i, probs in enumerate(probs_split):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index] for index in infer_data[i][1]
])
beam_search_result = ctc_beam_search_decoder(
probs_seq=probs,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
cutoff_prob=args.cutoff_prob,
ext_scoring_func=ext_scorer, )
print("\nTarget Transcription:\t%s" % target_transcription)
......@@ -204,14 +195,15 @@ def infer():
ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
beam_search_nproc_results = ctc_beam_search_decoder_nproc(
probs_split=probs_split,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
cutoff_prob=args.cutoff_prob,
ext_scoring_func=ext_scorer, )
for i, beam_search_result in enumerate(beam_search_nproc_results):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index] for index in infer_data[i][1]
])
print("\nTarget Transcription:\t%s" % target_transcription)
for index in xrange(args.num_results_per_sample):
......@@ -224,10 +216,12 @@ def infer():
print("cur wer = %f , average wer = %f" %
(wer_cur, wer_sum / wer_counter))
else:
raise ValueError("Decoding method [%s] is not supported." % method)
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
def main():
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
infer()
......
"""
A simplifed version of Baidu DeepSpeech2 model.
"""
"""Contains DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
#TODO: add bidirectional rnn.
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding, act):
......
# -*- coding: utf-8 -*-
"""Test error rate."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import error_rate
class TestParse(unittest.TestCase):
def test_wer_1(self):
ref = 'i UM the PHONE IS i LEFT THE portable PHONE UPSTAIRS last night'
hyp = 'i GOT IT TO the FULLEST i LOVE TO portable FROM OF STORES last night'
word_error_rate = error_rate.wer(ref, hyp)
self.assertTrue(abs(word_error_rate - 0.769230769231) < 1e-6)
def test_wer_2(self):
ref = 'i UM the PHONE IS i LEFT THE portable PHONE UPSTAIRS last night'
word_error_rate = error_rate.wer(ref, ref)
self.assertEqual(word_error_rate, 0.0)
def test_wer_3(self):
ref = ' '
hyp = 'Hypothesis sentence'
with self.assertRaises(ValueError):
word_error_rate = error_rate.wer(ref, hyp)
def test_cer_1(self):
ref = 'werewolf'
hyp = 'weae wolf'
char_error_rate = error_rate.cer(ref, hyp)
self.assertTrue(abs(char_error_rate - 0.25) < 1e-6)
def test_cer_2(self):
ref = 'werewolf'
char_error_rate = error_rate.cer(ref, ref)
self.assertEqual(char_error_rate, 0.0)
def test_cer_3(self):
ref = u'我是中国人'
hyp = u'我是 美洲人'
char_error_rate = error_rate.cer(ref, hyp)
self.assertTrue(abs(char_error_rate - 0.6) < 1e-6)
def test_cer_4(self):
ref = u'我是中国人'
char_error_rate = error_rate.cer(ref, ref)
self.assertFalse(char_error_rate, 0.0)
def test_cer_5(self):
ref = ''
hyp = 'Hypothesis'
with self.assertRaises(ValueError):
char_error_rate = error_rate.cer(ref, hyp)
if __name__ == '__main__':
unittest.main()
"""
Trainer for a simplifed version of Baidu DeepSpeech2 model.
"""
"""Trainer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
import distutils.util
import sys
import os
import argparse
import gzip
import time
import sys
import distutils.util
import paddle.v2 as paddle
from model import deep_speech2
from audio_data_utils import DataGenerator
import numpy as np
import os
#TODO: add WER metric
from data_utils.data import DataGenerator
import utils
parser = argparse.ArgumentParser(
description='Simplified version of DeepSpeech2 trainer.')
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--batch_size", default=32, type=int, help="Minibatch size.")
parser.add_argument(
......@@ -51,32 +49,38 @@ parser.add_argument(
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--use_sortagrad",
default=False,
default=True,
type=distutils.util.strtobool,
help="Use sortagrad or not. (default: %(default)s)")
parser.add_argument(
"--shuffle_method",
default='instance_shuffle',
type=str,
help="Shuffle method: 'instance_shuffle', 'batch_shuffle', "
"'batch_shuffle_batch'. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=4,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--normalizer_manifest_path",
default='data/manifest.libri.train-clean-100',
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--train_manifest_path",
default='data/manifest.libri.train-clean-100',
default='datasets/manifest.train',
type=str,
help="Manifest path for training. (default: %(default)s)")
parser.add_argument(
"--dev_manifest_path",
default='data/manifest.libri.dev-clean',
default='datasets/manifest.dev',
type=str,
help="Manifest path for validation. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='data/eng_vocab.txt',
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
......@@ -86,37 +90,42 @@ parser.add_argument(
help="If set None, the training will start from scratch. "
"Otherwise, the training will resume from "
"the existing model of this path. (default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='{}',
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
args = parser.parse_args()
def train():
"""
DeepSpeech2 training.
"""
"""DeepSpeech2 training."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
normalizer_manifest_path=args.normalizer_manifest_path,
normalizer_num_samples=200,
max_duration=20.0,
min_duration=0.0,
stride_ms=10,
window_ms=20)
def data_generator():
return DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config=args.augmentation_config)
train_generator = data_generator()
test_generator = data_generator()
# create network config
dict_size = data_generator.vocabulary_size()
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
height=161,
width=2000,
type=paddle.data_type.dense_vector(322000))
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(dict_size))
type=paddle.data_type.integer_value_sequence(
train_generator.vocab_size))
cost = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=dict_size,
dict_size=train_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
......@@ -136,28 +145,18 @@ def train():
cost=cost, parameters=parameters, update_equation=optimizer)
# prepare data reader
train_batch_reader_sortagrad = data_generator.batch_reader_creator(
manifest_path=args.train_manifest_path,
batch_size=args.batch_size,
padding_to=2000,
flatten=True,
sort_by_duration=True,
shuffle=False)
train_batch_reader_nosortagrad = data_generator.batch_reader_creator(
train_batch_reader = train_generator.batch_reader_creator(
manifest_path=args.train_manifest_path,
batch_size=args.batch_size,
padding_to=2000,
flatten=True,
sort_by_duration=False,
shuffle=True)
test_batch_reader = data_generator.batch_reader_creator(
min_batch_size=args.trainer_count,
sortagrad=args.use_sortagrad if args.init_model_path is None else False,
shuffle_method=args.shuffle_method)
test_batch_reader = test_generator.batch_reader_creator(
manifest_path=args.dev_manifest_path,
batch_size=args.batch_size,
padding_to=2000,
flatten=True,
sort_by_duration=False,
shuffle=False)
feeding = data_generator.data_name_feeding()
min_batch_size=1, # must be 1, but will have errors.
sortagrad=False,
shuffle_method=None)
# create event handler
def event_handler(event):
......@@ -165,9 +164,9 @@ def train():
if isinstance(event, paddle.event.EndIteration):
cost_sum += event.cost
cost_counter += 1
if event.batch_id % 50 == 0:
print "\nPass: %d, Batch: %d, TrainCost: %f" % (
event.pass_id, event.batch_id, cost_sum / cost_counter)
if (event.batch_id + 1) % 100 == 0:
print("\nPass: %d, Batch: %d, TrainCost: %f" % (
event.pass_id, event.batch_id + 1, cost_sum / cost_counter))
cost_sum, cost_counter = 0.0, 0
with gzip.open("params.tar.gz", 'w') as f:
parameters.to_tar(f)
......@@ -178,28 +177,21 @@ def train():
start_time = time.time()
cost_sum, cost_counter = 0.0, 0
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_batch_reader, feeding=feeding)
print "\n------- Time: %d sec, Pass: %d, ValidationCost: %s" % (
time.time() - start_time, event.pass_id, result.cost)
result = trainer.test(
reader=test_batch_reader, feeding=test_generator.feeding)
print("\n------- Time: %d sec, Pass: %d, ValidationCost: %s" %
(time.time() - start_time, event.pass_id, result.cost))
# run train
# first pass with sortagrad
if args.use_sortagrad:
trainer.train(
reader=train_batch_reader_sortagrad,
event_handler=event_handler,
num_passes=1,
feeding=feeding)
args.num_passes -= 1
# other passes without sortagrad
trainer.train(
reader=train_batch_reader_nosortagrad,
reader=train_batch_reader,
event_handler=event_handler,
num_passes=args.num_passes,
feeding=feeding)
feeding=train_generator.feeding)
def main():
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
train()
......
"""
Parameters tuning for beam search decoder in Deep Speech 2.
"""
"""Parameters tuning for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
import distutils.util
import argparse
import gzip
from audio_data_utils import DataGenerator
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from error_rate import wer
parser = argparse.ArgumentParser(
description='Parameters tuning for ctc beam search decoder in Deep Speech 2.'
)
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--num_samples",
default=100,
......@@ -39,6 +38,11 @@ parser.add_argument(
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--normalizer_manifest_path",
default='data/manifest.libri.train-clean-100',
......@@ -56,7 +60,7 @@ parser.add_argument(
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='data/eng_vocab.txt',
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
......@@ -77,7 +81,7 @@ parser.add_argument(
help="Number of outputs per sample in beam search. (default: %(default)d)")
parser.add_argument(
"--language_model_path",
default="./data/1Billion.klm",
default="data/1Billion.klm",
type=str,
help="Path for language model. (default: %(default)s)")
parser.add_argument(
......@@ -120,9 +124,7 @@ args = parser.parse_args()
def tune():
"""
Tune parameters alpha and beta on one minibatch.
"""
"""Tune parameters alpha and beta on one minibatch."""
if not args.num_alphas >= 0:
raise ValueError("num_alphas must be non-negative!")
......@@ -133,28 +135,22 @@ def tune():
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
normalizer_manifest_path=args.normalizer_manifest_path,
normalizer_num_samples=200,
max_duration=20.0,
min_duration=0.0,
stride_ms=10,
window_ms=20)
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}')
# create network config
dict_size = data_generator.vocabulary_size()
vocab_list = data_generator.vocabulary_list()
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
height=161,
width=2000,
type=paddle.data_type.dense_vector(322000))
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(dict_size))
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=dict_size,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
......@@ -165,21 +161,18 @@ def tune():
gzip.open(args.model_filepath))
# prepare infer data
feeding = data_generator.data_name_feeding()
test_batch_reader = data_generator.batch_reader_creator(
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
padding_to=2000,
flatten=True,
sort_by_duration=False,
shuffle=False)
sortagrad=False,
shuffle_method=None)
# get one batch data for tuning
infer_data = test_batch_reader().next()
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) / len(infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
......@@ -198,13 +191,15 @@ def tune():
# beam search decode
if args.decode_method == "beam_search":
for i, probs in enumerate(probs_split):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index]
for index in infer_data[i][1]
])
beam_search_result = ctc_beam_search_decoder(
probs_seq=probs,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
cutoff_prob=args.cutoff_prob,
ext_scoring_func=ext_scorer, )
wer_sum += wer(target_transcription, beam_search_result[0][1])
......@@ -213,18 +208,21 @@ def tune():
elif args.decode_method == "beam_search_nproc":
beam_search_nproc_results = ctc_beam_search_decoder_nproc(
probs_split=probs_split,
vocabulary=vocab_list,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
blank_id=len(vocab_list),
blank_id=len(data_generator.vocab_list),
ext_scoring_func=ext_scorer, )
for i, beam_search_result in enumerate(beam_search_nproc_results):
target_transcription = ''.join(
[vocab_list[index] for index in infer_data[i][1]])
target_transcription = ''.join([
data_generator.vocab_list[index]
for index in infer_data[i][1]
])
wer_sum += wer(target_transcription, beam_search_result[0][1])
wer_counter += 1
else:
raise ValueError("Decoding method [%s] is not supported." % method)
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
print("alpha = %f\tbeta = %f\tWER = %f" %
(alpha, beta, wer_sum / wer_counter))
......
"""Contains common utility functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----- Configuration Arguments -----")
for arg, value in vars(args).iteritems():
print("%s: %s" % (arg, value))
print("------------------------------------")
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册