提交 94688264 编写于 作者: 小湉湉's avatar 小湉湉

add ernie sat model file and config

上级 0ea9def0
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
mean_phn_span: 8
mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 2
###########################################################
# MODEL SETTING #
###########################################################
model:
text_masking: false
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
encoder_type: conformer
decoder_type: conformer
enc_input_layer: sega_mlm
enc_pre_speech_layer: 0
enc_cnn_module_kernel: 7
enc_attention_dim: 384
enc_attention_heads: 2
enc_linear_units: 1536
enc_num_blocks: 4
enc_dropout_rate: 0.2
enc_positional_dropout_rate: 0.2
enc_attention_dropout_rate: 0.2
enc_normalize_before: true
enc_macaron_style: true
enc_use_cnn_module: true
enc_selfattention_layer_type: legacy_rel_selfattn
enc_activation_type: swish
enc_pos_enc_layer_type: legacy_rel_pos
enc_positionwise_layer_type: conv1d
enc_positionwise_conv_kernel_size: 3
dec_cnn_module_kernel: 31
dec_attention_dim: 384
dec_attention_heads: 2
dec_linear_units: 1536
dec_num_blocks: 4
dec_dropout_rate: 0.2
dec_positional_dropout_rate: 0.2
dec_attention_dropout_rate: 0.2
dec_macaron_style: true
dec_use_cnn_module: true
dec_selfattention_layer_type: legacy_rel_selfattn
dec_activation_type: swish
dec_pos_enc_layer_type: legacy_rel_pos
dec_positionwise_layer_type: conv1d
dec_positionwise_conv_kernel_size: 3
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 200
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086
token_list:
- <blank>
- <unk>
- d
- sp
- sh
- ii
- j
- zh
- l
- x
- b
- g
- uu
- e5
- h
- q
- m
- i1
- t
- z
- ch
- f
- s
- u4
- ix4
- i4
- n
- i3
- iu3
- vv
- ian4
- ix2
- r
- e4
- ai4
- k
- ing2
- a1
- en2
- ui4
- ong1
- uo3
- u2
- u3
- ao4
- ee
- p
- an1
- eng2
- i2
- in1
- c
- ai2
- ian2
- e2
- an4
- ing4
- v4
- ai3
- a5
- ian3
- eng1
- ong4
- ang4
- ian1
- ing1
- iy4
- ao3
- ang1
- uo4
- u1
- iao4
- iu4
- a4
- van2
- ie4
- ang2
- ou4
- iang4
- ix1
- er4
- iy1
- e1
- en1
- ui2
- an3
- ei4
- ong2
- uo1
- ou3
- uo2
- iao1
- ou1
- an2
- uan4
- ia4
- ia1
- ang3
- v3
- iu2
- iao3
- in4
- a3
- ei3
- iang3
- v2
- eng4
- en3
- aa
- uan1
- v1
- ao1
- ve4
- ie3
- ai1
- ing3
- iang1
- a2
- ui1
- en4
- en5
- in3
- uan3
- e3
- ie1
- ve2
- ei2
- in2
- ix3
- uan2
- iang2
- ie2
- ua4
- ou2
- uai4
- er2
- eng3
- uang3
- un1
- ong3
- uang4
- vn4
- un2
- iy3
- iz4
- ui3
- iao2
- iong4
- un4
- van4
- ao2
- uang1
- iy5
- o2
- ei1
- ua1
- iu1
- uang2
- er5
- o1
- un3
- vn1
- vn2
- o4
- ve1
- van3
- ua2
- er3
- iong3
- van1
- ia2
- iy2
- ia3
- iong1
- uo5
- oo
- ve3
- ou5
- uai3
- ian5
- iong2
- uai2
- uai1
- ua3
- vn3
- ia5
- ie5
- ueng1
- o5
- o3
- iang5
- ei5
- <sos/eos>
\ No newline at end of file
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./aishell3_alignment_tone \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=aishell3 \
--rootdir=~/datasets/data_aishell3/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi
#!/bin/bash
\ No newline at end of file
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=1 \
--phones-dict=dump/phone_id_map.txt
\ No newline at end of file
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=ernie_sat
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
\ No newline at end of file
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
......@@ -94,8 +94,8 @@ updater:
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
......
......@@ -88,8 +88,8 @@ updater:
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
......
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
mean_phn_span: 8
mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 2
###########################################################
# MODEL SETTING #
###########################################################
model:
text_masking: true
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
encoder_type: conformer
decoder_type: conformer
enc_input_layer: sega_mlm
enc_pre_speech_layer: 0
enc_cnn_module_kernel: 7
enc_attention_dim: 384
enc_attention_heads: 2
enc_linear_units: 1536
enc_num_blocks: 4
enc_dropout_rate: 0.2
enc_positional_dropout_rate: 0.2
enc_attention_dropout_rate: 0.2
enc_normalize_before: true
enc_macaron_style: true
enc_use_cnn_module: true
enc_selfattention_layer_type: legacy_rel_selfattn
enc_activation_type: swish
enc_pos_enc_layer_type: legacy_rel_pos
enc_positionwise_layer_type: conv1d
enc_positionwise_conv_kernel_size: 3
dec_cnn_module_kernel: 31
dec_attention_dim: 384
dec_attention_heads: 2
dec_linear_units: 1536
dec_num_blocks: 4
dec_dropout_rate: 0.2
dec_positional_dropout_rate: 0.2
dec_attention_dropout_rate: 0.2
dec_macaron_style: true
dec_use_cnn_module: true
dec_selfattention_layer_type: legacy_rel_selfattn
dec_activation_type: swish
dec_pos_enc_layer_type: legacy_rel_pos
dec_positionwise_layer_type: conv1d
dec_positionwise_conv_kernel_size: 3
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 100
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086
token_list:
- <blank>
- <unk>
- AH0
- T
- N
- sp
- S
- R
- D
- L
- Z
- DH
- IH1
- K
- W
- M
- EH1
- AE1
- ER0
- B
- IY1
- P
- V
- IY0
- F
- HH
- AA1
- AY1
- AH1
- EY1
- IH0
- AO1
- OW1
- UW1
- G
- NG
- SH
- Y
- TH
- ER1
- JH
- UH1
- AW1
- CH
- IH2
- OW0
- OW2
- EY2
- EH2
- UW0
- OY1
- ZH
- EH0
- AY2
- AW2
- AA2
- AE2
- IY2
- AH2
- AE0
- AO2
- AY0
- AO0
- UW2
- UH2
- AA0
- EY0
- AW0
- UH0
- ER2
- OY2
- OY0
- d
- sh
- ii
- j
- zh
- l
- x
- b
- g
- uu
- e5
- h
- q
- m
- i1
- t
- z
- ch
- f
- s
- u4
- ix4
- i4
- n
- i3
- iu3
- vv
- ian4
- ix2
- r
- e4
- ai4
- k
- ing2
- a1
- en2
- ui4
- ong1
- uo3
- u2
- u3
- ao4
- ee
- p
- an1
- eng2
- i2
- in1
- c
- ai2
- ian2
- e2
- an4
- ing4
- v4
- ai3
- a5
- ian3
- eng1
- ong4
- ang4
- ian1
- ing1
- iy4
- ao3
- ang1
- uo4
- u1
- iao4
- iu4
- a4
- van2
- ie4
- ang2
- ou4
- iang4
- ix1
- er4
- iy1
- e1
- en1
- ui2
- an3
- ei4
- ong2
- uo1
- ou3
- uo2
- iao1
- ou1
- an2
- uan4
- ia4
- ia1
- ang3
- v3
- iu2
- iao3
- in4
- a3
- ei3
- iang3
- v2
- eng4
- en3
- aa
- uan1
- v1
- ao1
- ve4
- ie3
- ai1
- ing3
- iang1
- a2
- ui1
- en4
- en5
- in3
- uan3
- e3
- ie1
- ve2
- ei2
- in2
- ix3
- uan2
- iang2
- ie2
- ua4
- ou2
- uai4
- er2
- eng3
- uang3
- un1
- ong3
- uang4
- vn4
- un2
- iy3
- iz4
- ui3
- iao2
- iong4
- un4
- van4
- ao2
- uang1
- iy5
- o2
- ei1
- ua1
- iu1
- uang2
- er5
- o1
- un3
- vn1
- vn2
- o4
- ve1
- van3
- ua2
- er3
- iong3
- van1
- ia2
- iy2
- ia3
- iong1
- uo5
- oo
- ve3
- ou5
- uai3
- ian5
- iong2
- uai2
- uai1
- ua3
- vn3
- ia5
- ie5
- ueng1
- o5
- o3
- iang5
- ei5
- <sos/eos>
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./aishell3_alignment_tone \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=aishell3 \
--rootdir=~/datasets/data_aishell3/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi
#!/bin/bash
\ No newline at end of file
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=1 \
--phones-dict=dump/phone_id_map.txt
\ No newline at end of file
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=ernie_sat
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
\ No newline at end of file
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
......@@ -21,22 +21,22 @@ num_workers: 4
# MODEL SETTING #
###########################################################
model:
encoder_hidden_size: 128
encoder_kernel_size: 3
encoder_dilations: [1, 3, 9, 27, 1, 3, 9, 27, 1, 1]
duration_predictor_hidden_size: 128
decoder_hidden_size: 128
decoder_output_size: 80
decoder_kernel_size: 3
decoder_dilations: [1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 1]
encoder_hidden_size: 128
encoder_kernel_size: 3
encoder_dilations: [1, 3, 9, 27, 1, 3, 9, 27, 1, 1]
duration_predictor_hidden_size: 128
decoder_hidden_size: 128
decoder_output_size: 80
decoder_kernel_size: 3
decoder_dilations: [1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 1]
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.002 # learning rate
max_grad_norm: 1
optim: adam # optimizer type
learning_rate: 0.002 # learning rate
max_grad_norm: 1
###########################################################
# TRAINING SETTING #
......
......@@ -29,7 +29,7 @@ generator_params:
out_channels: 4 # Number of output channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
channels: 384 # Initial number of channels for conv layers.
upsample_scales: [5, 5, 3] # List of Upsampling scales. prod(upsample_scales) == n_shift
upsample_scales: [5, 5, 3] # List of Upsampling scales. prod(upsample_scales) x out_channels == n_shift
stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
stacks: 4 # Number of stacks in a single residual stack module.
use_weight_norm: True # Whether to use weight normalization.
......
......@@ -29,7 +29,7 @@ generator_params:
out_channels: 4 # Number of output channels.
kernel_size: 7 # Kernel size of initial and final conv layers.
channels: 384 # Initial number of channels for conv layers.
upsample_scales: [5, 5, 3] # List of Upsampling scales. prod(upsample_scales) == n_shift
upsample_scales: [5, 5, 3] # List of Upsampling scales. prod(upsample_scales) x out_channels == n_shift
stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
stacks: 4 # Number of stacks in a single residual stack module.
use_weight_norm: True # Whether to use weight normalization.
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Usage:
align.py wavfile trsfile outwordfile outphonefile
"""
......
#!/usr/bin/env python3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
from typing import Dict
......@@ -305,7 +317,6 @@ def get_dur_adj_factor(orig_dur: List[int],
def prep_feats_with_dur(wav_path: str,
mlm_model: nn.Layer,
source_lang: str="English",
target_lang: str="English",
old_str: str="",
......@@ -425,8 +436,7 @@ def prep_feats_with_dur(wav_path: str,
return new_wav, new_phns, new_mfa_start, new_mfa_end, old_span_bdy, new_span_bdy
def prep_feats(mlm_model: nn.Layer,
wav_path: str,
def prep_feats(wav_path: str,
source_lang: str="english",
target_lang: str="english",
old_str: str="",
......@@ -440,7 +450,6 @@ def prep_feats(mlm_model: nn.Layer,
wav, phns, mfa_start, mfa_end, old_span_bdy, new_span_bdy = prep_feats_with_dur(
source_lang=source_lang,
target_lang=target_lang,
mlm_model=mlm_model,
old_str=old_str,
new_str=new_str,
wav_path=wav_path,
......@@ -482,7 +491,6 @@ def decode_with_model(mlm_model: nn.Layer,
batch, old_span_bdy, new_span_bdy = prep_feats(
source_lang=source_lang,
target_lang=target_lang,
mlm_model=mlm_model,
wav_path=wav_path,
old_str=old_str,
new_str=new_str,
......
此差异已折叠。
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict
from typing import List
......
#!/bin/bash
set -e
source path.sh
# en --> zh 的 语音合成
# 根据 Prompt_003_new 作为提示语音: This was not the show for me. 来合成: '今天天气很好'
# 注: 输入的 new_str 需为中文汉字, 否则会通过预处理只保留中文汉字, 即合成预处理后的中文语音。
python local/inference_new.py \
--task_name=cross-lingual_clone \
--model_name=paddle_checkpoint_dual_mask_enzh \
--uid=Prompt_003_new \
--new_str='今天天气很好.' \
--prefix='./prompt/dev/' \
--source_lang=english \
--target_lang=chinese \
--output_name=pred_clone.wav \
--voc=pwgan_aishell3 \
--voc_config=download/pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=download/pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=download/pwg_aishell3_ckpt_0.5/feats_stats.npy \
--am=fastspeech2_csmsc \
--am_config=download/fastspeech2_conformer_baker_ckpt_0.5/conformer.yaml \
--am_ckpt=download/fastspeech2_conformer_baker_ckpt_0.5/snapshot_iter_76000.pdz \
--am_stat=download/fastspeech2_conformer_baker_ckpt_0.5/speech_stats.npy \
--phones_dict=download/fastspeech2_conformer_baker_ckpt_0.5/phone_id_map.txt
#!/bin/bash
set -e
source path.sh
# 纯英文的语音合成
# 样例为根据 p299_096 对应的语音作为提示语音: This was not the show for me. 来合成: 'I enjoy my life.'
python local/inference_new.py \
--task_name=synthesize \
--model_name=paddle_checkpoint_en \
--uid=p299_096 \
--new_str='I enjoy my life, do you?' \
--prefix='./prompt/dev/' \
--source_lang=english \
--target_lang=english \
--output_name=pred_gen.wav \
--voc=pwgan_aishell3 \
--voc_config=download/pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=download/pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=download/pwg_aishell3_ckpt_0.5/feats_stats.npy \
--am=fastspeech2_ljspeech \
--am_config=download/fastspeech2_nosil_ljspeech_ckpt_0.5/default.yaml \
--am_ckpt=download/fastspeech2_nosil_ljspeech_ckpt_0.5/snapshot_iter_100000.pdz \
--am_stat=download/fastspeech2_nosil_ljspeech_ckpt_0.5/speech_stats.npy \
--phones_dict=download/fastspeech2_nosil_ljspeech_ckpt_0.5/phone_id_map.txt
#!/bin/bash
set -e
source path.sh
# 纯英文的语音编辑
# 样例为把 p243_new 对应的原始语音: For that reason cover should not be given.编辑成 'for that reason cover is impossible to be given.' 对应的语音
# NOTE: 语音编辑任务暂支持句子中 1 个位置的替换或者插入文本操作
python local/inference_new.py \
--task_name=edit \
--model_name=paddle_checkpoint_en \
--uid=p243_new \
--new_str='for that reason cover is impossible to be given.' \
--prefix='./prompt/dev/' \
--source_lang=english \
--target_lang=english \
--output_name=pred_edit.wav \
--voc=pwgan_aishell3 \
--voc_config=download/pwg_aishell3_ckpt_0.5/default.yaml \
--voc_ckpt=download/pwg_aishell3_ckpt_0.5/snapshot_iter_1000000.pdz \
--voc_stat=download/pwg_aishell3_ckpt_0.5/feats_stats.npy \
--am=fastspeech2_ljspeech \
--am_config=download/fastspeech2_nosil_ljspeech_ckpt_0.5/default.yaml \
--am_ckpt=download/fastspeech2_nosil_ljspeech_ckpt_0.5/snapshot_iter_100000.pdz \
--am_stat=download/fastspeech2_nosil_ljspeech_ckpt_0.5/speech_stats.npy \
--phones_dict=download/fastspeech2_nosil_ljspeech_ckpt_0.5/phone_id_map.txt
#!/bin/bash
rm -rf *.wav
./run_sedit_en_new.sh # 语音编辑任务(英文)
./run_gen_en_new.sh # 个性化语音合成任务(英文)
./run_clone_en_to_zh_new.sh # 跨语言语音合成任务(英文到中文的语音克隆)
\ No newline at end of file
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
mean_phn_span: 8
mlm_prob: 0.8
###########################################################
# DATA SETTING #
###########################################################
batch_size: 20
num_workers: 2
###########################################################
# MODEL SETTING #
###########################################################
model:
text_masking: false
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
encoder_type: conformer
decoder_type: conformer
enc_input_layer: sega_mlm
enc_pre_speech_layer: 0
enc_cnn_module_kernel: 7
enc_attention_dim: 384
enc_attention_heads: 2
enc_linear_units: 1536
enc_num_blocks: 4
enc_dropout_rate: 0.2
enc_positional_dropout_rate: 0.2
enc_attention_dropout_rate: 0.2
enc_normalize_before: true
enc_macaron_style: true
enc_use_cnn_module: true
enc_selfattention_layer_type: legacy_rel_selfattn
enc_activation_type: swish
enc_pos_enc_layer_type: legacy_rel_pos
enc_positionwise_layer_type: conv1d
enc_positionwise_conv_kernel_size: 3
dec_cnn_module_kernel: 31
dec_attention_dim: 384
dec_attention_heads: 2
dec_linear_units: 1536
dec_num_blocks: 4
dec_dropout_rate: 0.2
dec_positional_dropout_rate: 0.2
dec_attention_dropout_rate: 0.2
dec_macaron_style: true
dec_use_cnn_module: true
dec_selfattention_layer_type: legacy_rel_selfattn
dec_activation_type: swish
dec_pos_enc_layer_type: legacy_rel_pos
dec_positionwise_layer_type: conv1d
dec_positionwise_conv_kernel_size: 3
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 200
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086
token_list:
- <blank>
- <unk>
- AH0
- T
- N
- sp
- D
- S
- R
- L
- IH1
- DH
- AE1
- M
- EH1
- K
- Z
- W
- HH
- ER0
- AH1
- IY1
- P
- V
- F
- B
- AY1
- IY0
- EY1
- AA1
- AO1
- UW1
- IH0
- OW1
- NG
- G
- SH
- ER1
- Y
- TH
- AW1
- CH
- UH1
- IH2
- JH
- OW0
- EH2
- OY1
- AY2
- EH0
- EY2
- UW0
- AE2
- AA2
- OW2
- AH2
- ZH
- AO2
- IY2
- AE0
- UW2
- AY0
- AA0
- AO0
- AW2
- EY0
- UH2
- ER2
- OY2
- UH0
- AW0
- OY0
- <sos/eos>
\ No newline at end of file
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./vctk_alignment \
--output durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=vctk \
--rootdir=~/datasets/VCTK-Corpus-0.92/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi
#!/bin/bash
\ No newline at end of file
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=1 \
--phones-dict=dump/phone_id_map.txt
\ No newline at end of file
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=ernie_sat
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
\ No newline at end of file
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
......@@ -24,7 +24,7 @@ f0max: 400 # Maximum f0 for pitch extraction.
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 4
num_workers: 2
###########################################################
......@@ -88,8 +88,8 @@ updater:
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
......
......@@ -28,6 +28,149 @@ from paddlespeech.t2s.modules.nets_utils import phones_masking
from paddlespeech.t2s.modules.nets_utils import phones_text_masking
# 因为要传参数,所以需要额外构建
def build_erniesat_collate_fn(
mlm_prob: float=0.8,
mean_phn_span: int=8,
seg_emb: bool=False,
text_masking: bool=False,
epoch: int=-1, ):
if epoch == -1:
mlm_prob_factor = 1
else:
mlm_prob_factor = 0.8
return ErnieSATCollateFn(
mlm_prob=mlm_prob * mlm_prob_factor,
mean_phn_span=mean_phn_span,
seg_emb=seg_emb,
text_masking=text_masking)
class ErnieSATCollateFn:
"""Functor class of common_collate_fn()"""
def __init__(self,
mlm_prob: float=0.8,
mean_phn_span: int=8,
seg_emb: bool=False,
text_masking: bool=False):
self.mlm_prob = mlm_prob
self.mean_phn_span = mean_phn_span
self.seg_emb = seg_emb
self.text_masking = text_masking
def __call__(self, exmaples):
return erniesat_batch_fn(
exmaples,
mlm_prob=self.mlm_prob,
mean_phn_span=self.mean_phn_span,
seg_emb=self.seg_emb,
text_masking=self.text_masking)
def erniesat_batch_fn(examples,
mlm_prob: float=0.8,
mean_phn_span: int=8,
seg_emb: bool=False,
text_masking: bool=False):
# fields = ["text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy"]
text = [np.array(item["text"], dtype=np.int64) for item in examples]
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
text_lengths = [
np.array(item["text_lengths"], dtype=np.int64) for item in examples
]
speech_lengths = [
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
]
align_start = [
np.array(item["align_start"], dtype=np.int64) for item in examples
]
align_end = [
np.array(item["align_end"], dtype=np.int64) for item in examples
]
align_start_lengths = [
np.array(len(item["align_start"]), dtype=np.int64) for item in examples
]
# add_pad
text = batch_sequences(text)
speech = batch_sequences(speech)
align_start = batch_sequences(align_start)
align_end = batch_sequences(align_end)
# convert each batch to paddle.Tensor
text = paddle.to_tensor(text)
speech = paddle.to_tensor(speech)
text_lengths = paddle.to_tensor(text_lengths)
speech_lengths = paddle.to_tensor(speech_lengths)
align_start_lengths = paddle.to_tensor(align_start_lengths)
speech_pad = speech
text_pad = text
text_mask = make_non_pad_mask(
text_lengths, text_pad, length_dim=1).unsqueeze(-2)
speech_mask = make_non_pad_mask(
speech_lengths, speech_pad[:, :, 0], length_dim=1).unsqueeze(-2)
# dual_mask 的是混合中英时候同时 mask 语音和文本
# ernie sat 在实现跨语言的时候都 mask 了
span_bdy = None
if text_masking:
masked_pos, text_masked_pos = phones_text_masking(
xs_pad=speech_pad,
src_mask=speech_mask,
text_pad=text_pad,
text_mask=text_mask,
align_start=align_start,
align_end=align_end,
align_start_lens=align_start_lengths,
mlm_prob=mlm_prob,
mean_phn_span=mean_phn_span,
span_bdy=span_bdy)
# 训练纯中文和纯英文的 -> a3t 没有对 phoneme 做 mask, 只对语音 mask 了
# a3t 和 ernie sat 的区别主要在于做 mask 的时候
else:
masked_pos = phones_masking(
xs_pad=speech_pad,
src_mask=speech_mask,
align_start=align_start,
align_end=align_end,
align_start_lens=align_start_lengths,
mlm_prob=mlm_prob,
mean_phn_span=mean_phn_span,
span_bdy=span_bdy)
text_masked_pos = paddle.zeros(paddle.shape(text_pad))
speech_seg_pos, text_seg_pos = get_seg_pos(
speech_pad=speech_pad,
text_pad=text_pad,
align_start=align_start,
align_end=align_end,
align_start_lens=align_start_lengths,
seg_emb=seg_emb)
batch = {
"text": text,
"speech": speech,
# need to generate
"masked_pos": masked_pos,
"speech_mask": speech_mask,
"text_mask": text_mask,
"speech_seg_pos": speech_seg_pos,
"text_seg_pos": text_seg_pos,
"text_masked_pos": text_masked_pos
}
return batch
def tacotron2_single_spk_batch_fn(examples):
# fields = ["text", "text_lengths", "speech", "speech_lengths"]
text = [np.array(item["text"], dtype=np.int64) for item in examples]
......@@ -378,7 +521,6 @@ class MLMCollateFn:
mean_phn_span=self.mean_phn_span,
seg_emb=self.seg_emb,
text_masking=self.text_masking,
attention_window=self.attention_window,
not_sequence=self.not_sequence)
......@@ -389,7 +531,6 @@ def mlm_collate_fn(
mean_phn_span: int=8,
seg_emb: bool=False,
text_masking: bool=False,
attention_window: int=0,
pad_value: int=0,
not_sequence: Collection[str]=(),
) -> Tuple[List[str], Dict[str, paddle.Tensor]]:
......@@ -420,6 +561,7 @@ def mlm_collate_fn(
feats = feats_extract.get_log_mel_fbank(np.array(output["speech"][0]))
feats = paddle.to_tensor(feats)
print("feats.shape:", feats.shape)
feats_lens = paddle.shape(feats)[0]
feats = paddle.unsqueeze(feats, 0)
......@@ -439,6 +581,7 @@ def mlm_collate_fn(
text_lens, text_pad, length_dim=1).unsqueeze(-2)
speech_mask = make_non_pad_mask(
feats_lens, speech_pad[:, :, 0], length_dim=1).unsqueeze(-2)
span_bdy = None
if 'span_bdy' in output.keys():
span_bdy = output['span_bdy']
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
from operator import itemgetter
from pathlib import Path
import jsonlines
import numpy as np
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from paddlespeech.t2s.datasets.data_table import DataTable
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
"--speech-stats",
type=str,
required=True,
help="speech statistics file.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict", type=str, default=None, help="speaker id map file.")
args = parser.parse_args()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata, converters={
"speech": np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
speech_scaler = StandardScaler()
speech_scaler.mean_ = np.load(args.speech_stats)[0]
speech_scaler.scale_ = np.load(args.speech_stats)[1]
speech_scaler.n_features_in_ = speech_scaler.mean_.shape[0]
vocab_phones = {}
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
vocab_speaker = {}
with open(args.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
for spk, id in spk_id:
vocab_speaker[spk] = int(id)
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
speech = item['speech']
# normalize
speech = speech_scaler.transform(speech)
speech_dir = dumpdir / "data_speech"
speech_dir.mkdir(parents=True, exist_ok=True)
speech_path = speech_dir / f"{utt_id}_speech.npy"
np.save(speech_path, speech.astype(np.float32), allow_pickle=False)
phone_ids = [vocab_phones[p] for p in item['phones']]
spk_id = vocab_speaker[item["speaker"]]
record = {
"utt_id": item['utt_id'],
"spk_id": spk_id,
"text": phone_ids,
"text_lengths": item['text_lengths'],
"speech_lengths": item['speech_lengths'],
"durations": item['durations'],
"speech": str(speech_path),
"align_start": item['align_start'],
"align_end": item['align_end'],
}
# add spk_emb for voice cloning
if "spk_emb" in item:
record["spk_emb"] = str(item["spk_emb"])
output_metadata.append(record)
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from concurrent.futures import ThreadPoolExecutor
from operator import itemgetter
from pathlib import Path
from typing import Any
from typing import Dict
from typing import List
import jsonlines
import librosa
import numpy as np
import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.utils import str2bool
def process_sentence(config: Dict[str, Any],
fp: Path,
sentences: Dict,
output_dir: Path,
mel_extractor=None,
cut_sil: bool=True,
spk_emb_dir: Path=None):
utt_id = fp.stem
# for vctk
if utt_id.endswith("_mic2"):
utt_id = utt_id[:-5]
record = None
if utt_id in sentences:
# reading, resampling may occur
wav, _ = librosa.load(str(fp), sr=config.fs)
if len(wav.shape) != 1:
return record
max_value = np.abs(wav).max()
if max_value > 1.0:
wav = wav / max_value
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(wav).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
speaker = sentences[utt_id][2]
d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
# little imprecise than use *.TextGrid directly
times = librosa.frames_to_time(
d_cumsum, sr=config.fs, hop_length=config.n_shift)
if cut_sil:
start = 0
end = d_cumsum[-1]
if phones[0] == "sil" and len(durations) > 1:
start = times[1]
durations = durations[1:]
phones = phones[1:]
if phones[-1] == 'sil' and len(durations) > 1:
end = times[-2]
durations = durations[:-1]
phones = phones[:-1]
sentences[utt_id][0] = phones
sentences[utt_id][1] = durations
start, end = librosa.time_to_samples([start, end], sr=config.fs)
wav = wav[start:end]
# extract mel feats
logmel = mel_extractor.get_log_mel_fbank(wav)
# change duration according to mel_length
compare_duration_and_mel_length(sentences, utt_id, logmel)
# utt_id may be popped in compare_duration_and_mel_length
if utt_id not in sentences:
return None
phones = sentences[utt_id][0]
durations = sentences[utt_id][1]
num_frames = logmel.shape[0]
assert sum(durations) == num_frames
new_d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
align_start = new_d_cumsum[:-1]
align_end = new_d_cumsum[1:]
assert len(align_start) == len(align_end) == len(durations)
mel_dir = output_dir / "data_speech"
mel_dir.mkdir(parents=True, exist_ok=True)
mel_path = mel_dir / (utt_id + "_speech.npy")
np.save(mel_path, logmel)
# align_start_lengths == text_lengths
record = {
"utt_id": utt_id,
"phones": phones,
"text_lengths": len(phones),
"speech_lengths": num_frames,
"durations": durations,
"speech": str(mel_path),
"speaker": speaker,
"align_start": align_start.tolist(),
"align_end": align_end.tolist(),
}
if spk_emb_dir:
if speaker in os.listdir(spk_emb_dir):
embed_name = utt_id + ".npy"
embed_path = spk_emb_dir / speaker / embed_name
if embed_path.is_file():
record["spk_emb"] = str(embed_path)
else:
return None
return record
def process_sentences(config,
fps: List[Path],
sentences: Dict,
output_dir: Path,
mel_extractor=None,
nprocs: int=1,
cut_sil: bool=True,
spk_emb_dir: Path=None):
if nprocs == 1:
results = []
for fp in tqdm.tqdm(fps, total=len(fps)):
record = process_sentence(
config=config,
fp=fp,
sentences=sentences,
output_dir=output_dir,
mel_extractor=mel_extractor,
cut_sil=cut_sil,
spk_emb_dir=spk_emb_dir)
if record:
results.append(record)
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp in fps:
future = pool.submit(process_sentence, config, fp,
sentences, output_dir, mel_extractor,
cut_sil, spk_emb_dir)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
record = ft.result()
if record:
results.append(record)
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features.")
parser.add_argument(
"--dataset",
default="baker",
type=str,
help="name of dataset, should in {baker, aishell3, ljspeech, vctk} now")
parser.add_argument(
"--rootdir", default=None, type=str, help="directory to dataset.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--dur-file", default=None, type=str, help="path to durations.txt.")
parser.add_argument("--config", type=str, help="fastspeech2 config file.")
parser.add_argument(
"--num-cpu", type=int, default=1, help="number of process.")
parser.add_argument(
"--cut-sil",
type=str2bool,
default=True,
help="whether cut sil in the edge of audio")
parser.add_argument(
"--spk_emb_dir",
default=None,
type=str,
help="directory to speaker embedding files.")
args = parser.parse_args()
rootdir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
dur_file = Path(args.dur_file).expanduser()
if args.spk_emb_dir:
spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve()
else:
spk_emb_dir = None
assert rootdir.is_dir()
assert dur_file.is_file()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
sentences, speaker_set = get_phn_dur(dur_file)
merge_silence(sentences)
phone_id_map_path = dumpdir / "phone_id_map.txt"
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
get_input_token(sentences, phone_id_map_path, args.dataset)
get_spk_id_map(speaker_set, speaker_id_map_path)
if args.dataset == "baker":
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
# split data into 3 sections
num_train = 9800
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "aishell3":
sub_num_dev = 5
wav_dir = rootdir / "train" / "wav"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
elif args.dataset == "ljspeech":
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
# split data into 3 sections
num_train = 12900
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
elif args.dataset == "vctk":
sub_num_dev = 5
wav_dir = rootdir / "wav48_silence_trimmed"
train_wav_files = []
dev_wav_files = []
test_wav_files = []
for speaker in os.listdir(wav_dir):
wav_files = sorted(list((wav_dir / speaker).rglob("*_mic2.flac")))
if len(wav_files) > 100:
train_wav_files += wav_files[:-sub_num_dev * 2]
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
test_wav_files += wav_files[-sub_num_dev:]
else:
train_wav_files += wav_files
else:
print("dataset should in {baker, aishell3, ljspeech, vctk} now!")
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# Extractor
mel_extractor = LogMelFBank(
sr=config.fs,
n_fft=config.n_fft,
hop_length=config.n_shift,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
# process for the 3 sections
if train_wav_files:
process_sentences(
config=config,
fps=train_wav_files,
sentences=sentences,
output_dir=train_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if dev_wav_files:
process_sentences(
config=config,
fps=dev_wav_files,
sentences=sentences,
output_dir=dev_dump_dir,
mel_extractor=mel_extractor,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if test_wav_files:
process_sentences(
config=config,
fps=test_wav_files,
sentences=sentences,
output_dir=test_dump_dir,
mel_extractor=mel_extractor,
nprocs=args.num_cpu,
cut_sil=args.cut_sil,
spk_emb_dir=spk_emb_dir)
if __name__ == "__main__":
main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import build_erniesat_collate_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.ernie_sat import ErnieSAT
from paddlespeech.t2s.models.ernie_sat import ErnieSATEvaluator
from paddlespeech.t2s.models.ernie_sat import ErnieSATUpdater
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import build_optimizers
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
world_size = paddle.distributed.get_world_size()
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
fields = [
"text", "text_lengths", "speech", "speech_lengths", "align_start",
"align_end"
]
converters = {"speech": np.load}
spk_num = None
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = DataTable(
data=train_metadata,
fields=fields,
converters=converters, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = DataTable(
data=dev_metadata,
fields=fields,
converters=converters, )
# collate function and dataloader
collate_fn = build_erniesat_collate_fn(
mlm_prob=config.mlm_prob,
mean_phn_span=config.mean_phn_span,
seg_emb=config.model['enc_input_layer'] == 'sega_mlm',
text_masking=config["model"]["text_masking"],
epoch=config["max_epoch"])
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
print("samplers done!")
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=collate_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
shuffle=False,
drop_last=False,
batch_size=config.batch_size,
collate_fn=collate_fn,
num_workers=config.num_workers)
print("dataloaders done!")
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_mels
model = ErnieSAT(idim=vocab_size, odim=odim, **config["model"])
if world_size > 1:
model = DataParallel(model)
print("model done!")
optimizer = build_optimizers(model, **config["optimizer"])
print("optimizer done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = ErnieSATUpdater(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
text_masking=config["model"]["text_masking"],
odim=odim,
output_dir=output_dir)
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
evaluator = ErnieSATEvaluator(
model=model,
dataloader=dev_dataloader,
text_masking=config["model"]["text_masking"],
odim=odim,
output_dir=output_dir, )
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train an ErnieSAT model.")
parser.add_argument("--config", type=str, help="ErnieSAT config file.")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
args = parser.parse_args()
with open(args.config) as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
if __name__ == "__main__":
main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -11,4 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .ernie_sat import *
from .ernie_sat_updater import *
from .mlm import *
此差异已折叠。
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddlespeech.t2s.modules.losses import MLMLoss
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class ErnieSATUpdater(StandardUpdater):
def __init__(self,
model: Layer,
optimizer: Optimizer,
dataloader: DataLoader,
init_state=None,
text_masking: bool=False,
odim: int=80,
output_dir: Path=None):
super().__init__(model, optimizer, dataloader, init_state=None)
self.criterion = MLMLoss(text_masking=text_masking, odim=odim)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
before_outs, after_outs, text_outs = self.model(
speech=batch["speech"],
text=batch["text"],
masked_pos=batch["masked_pos"],
speech_mask=batch["speech_mask"],
text_mask=batch["text_mask"],
speech_seg_pos=batch["speech_seg_pos"],
text_seg_pos=batch["text_seg_pos"])
mlm_loss, text_mlm_loss = self.criterion(
speech=batch["speech"],
before_outs=before_outs,
after_outs=after_outs,
masked_pos=batch["masked_pos"],
text=batch["text"],
# maybe None
text_outs=text_outs,
# maybe None
text_masked_pos=batch["text_masked_pos"])
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
optimizer = self.optimizer
optimizer.clear_grad()
loss.backward()
optimizer.step()
report("train/loss", float(loss))
report("train/mlm_loss", float(mlm_loss))
if text_mlm_loss is not None:
report("train/text_mlm_loss", float(text_mlm_loss))
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
losses_dict["mlm_loss"] = float(mlm_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class ErnieSATEvaluator(StandardEvaluator):
def __init__(self,
model: Layer,
dataloader: DataLoader,
text_masking: bool=False,
odim: int=80,
output_dir: Path=None):
super().__init__(model, dataloader)
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
self.criterion = MLMLoss(text_masking=text_masking, odim=odim)
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
before_outs, after_outs, text_outs = self.model(
speech=batch["speech"],
text=batch["text"],
masked_pos=batch["masked_pos"],
speech_mask=batch["speech_mask"],
text_mask=batch["text_mask"],
speech_seg_pos=batch["speech_seg_pos"],
text_seg_pos=batch["text_seg_pos"])
mlm_loss, text_mlm_loss = self.criterion(
speech=batch["speech"],
before_outs=before_outs,
after_outs=after_outs,
masked_pos=batch["masked_pos"],
text=batch["text"],
# maybe None
text_outs=text_outs,
# maybe None
text_masked_pos=batch["text_masked_pos"])
loss = mlm_loss + text_mlm_loss if text_mlm_loss is not None else mlm_loss
report("eval/loss", float(loss))
report("eval/mlm_loss", float(mlm_loss))
if text_mlm_loss is not None:
report("eval/text_mlm_loss", float(text_mlm_loss))
losses_dict["text_mlm_loss"] = float(text_mlm_loss)
losses_dict["mlm_loss"] = float(mlm_loss)
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import paddle
import yaml
......@@ -109,7 +120,6 @@ class MLMEncoder(nn.Layer):
positionwise_conv_kernel_size: int=1,
macaron_style: bool=False,
pos_enc_layer_type: str="abs_pos",
pos_enc_class=None,
selfattention_layer_type: str="selfattn",
activation_type: str="swish",
use_cnn_module: bool=False,
......@@ -334,7 +344,6 @@ class MLMDecoder(MLMEncoder):
# encoder and decoder is nn.Layer, not str
class MLM(nn.Layer):
def __init__(self,
token_list: Union[Tuple[str, ...], List[str]],
odim: int,
encoder: nn.Layer,
decoder: Optional[nn.Layer],
......@@ -345,7 +354,6 @@ class MLM(nn.Layer):
super().__init__()
self.odim = odim
self.token_list = token_list.copy()
self.encoder = encoder
self.decoder = decoder
self.vocab_size = encoder.text_embed[0]._num_embeddings
......@@ -535,32 +543,6 @@ def build_model(args: argparse.Namespace, model_class=MLMEncAsDecoder) -> MLM:
vocab_size = len(token_list)
odim = 80
pos_enc_class = ScaledPositionalEncoding if args.use_scaled_pos_enc else PositionalEncoding
if "conformer" == args.encoder:
conformer_self_attn_layer_type = args.encoder_conf[
'selfattention_layer_type']
conformer_pos_enc_layer_type = args.encoder_conf['pos_enc_layer_type']
conformer_rel_pos_type = "legacy"
if conformer_rel_pos_type == "legacy":
if conformer_pos_enc_layer_type == "rel_pos":
conformer_pos_enc_layer_type = "legacy_rel_pos"
if conformer_self_attn_layer_type == "rel_selfattn":
conformer_self_attn_layer_type = "legacy_rel_selfattn"
elif conformer_rel_pos_type == "latest":
assert conformer_pos_enc_layer_type != "legacy_rel_pos"
assert conformer_self_attn_layer_type != "legacy_rel_selfattn"
else:
raise ValueError(f"Unknown rel_pos_type: {conformer_rel_pos_type}")
args.encoder_conf[
'selfattention_layer_type'] = conformer_self_attn_layer_type
args.encoder_conf['pos_enc_layer_type'] = conformer_pos_enc_layer_type
if "conformer" == args.decoder:
args.decoder_conf[
'selfattention_layer_type'] = conformer_self_attn_layer_type
args.decoder_conf[
'pos_enc_layer_type'] = conformer_pos_enc_layer_type
# Encoder
encoder_class = MLMEncoder
......@@ -571,10 +553,7 @@ def build_model(args: argparse.Namespace, model_class=MLMEncAsDecoder) -> MLM:
args.encoder_conf['text_masking'] = False
encoder = encoder_class(
args.input_size,
vocab_size=vocab_size,
pos_enc_class=pos_enc_class,
**args.encoder_conf)
args.input_size, vocab_size=vocab_size, **args.encoder_conf)
# Decoder
if args.decoder != 'no_decoder':
......@@ -591,7 +570,6 @@ def build_model(args: argparse.Namespace, model_class=MLMEncAsDecoder) -> MLM:
odim=odim,
encoder=encoder,
decoder=decoder,
token_list=token_list,
**args.model_conf, )
# Initialize
......
......@@ -212,9 +212,7 @@ class FastSpeech2(nn.Layer):
super().__init__()
# store hyperparameters
self.idim = idim
self.odim = odim
self.eos = idim - 1
self.reduction_factor = reduction_factor
self.encoder_type = encoder_type
self.decoder_type = decoder_type
......
......@@ -1012,6 +1012,7 @@ class KLDivergenceLoss(nn.Layer):
# loss for ERNIE SAT
class MLMLoss(nn.Layer):
def __init__(self,
odim: int,
lsm_weight: float=0.1,
ignore_id: int=-1,
text_masking: bool=False):
......@@ -1023,15 +1024,18 @@ class MLMLoss(nn.Layer):
else:
self.l1_loss_func = nn.L1Loss(reduction='none')
self.text_masking = text_masking
self.odim = odim
def forward(self,
speech: paddle.Tensor,
before_outs: paddle.Tensor,
after_outs: paddle.Tensor,
masked_pos: paddle.Tensor,
text: paddle.Tensor=None,
text_outs: paddle.Tensor=None,
text_masked_pos: paddle.Tensor=None):
def forward(
self,
speech: paddle.Tensor,
before_outs: paddle.Tensor,
after_outs: paddle.Tensor,
masked_pos: paddle.Tensor,
# for text_loss when text_masking == True
text: paddle.Tensor=None,
text_outs: paddle.Tensor=None,
text_masked_pos: paddle.Tensor=None):
xs_pad = speech
mlm_loss_pos = masked_pos > 0
......@@ -1046,16 +1050,19 @@ class MLMLoss(nn.Layer):
paddle.reshape(after_outs, (-1, self.odim)),
paddle.reshape(xs_pad, (-1, self.odim))),
axis=-1)
loss_mlm = paddle.sum((loss * paddle.reshape(
mlm_loss = paddle.sum((loss * paddle.reshape(
mlm_loss_pos, [-1]))) / paddle.sum((mlm_loss_pos) + 1e-10)
text_mlm_loss = None
if self.text_masking:
loss_text = paddle.sum((self.text_mlm_loss(
assert text is not None
assert text_outs is not None
assert text_masked_pos is not None
text_mlm_loss = paddle.sum((self.text_mlm_loss(
paddle.reshape(text_outs, (-1, self.vocab_size)),
paddle.reshape(text, (-1))) * paddle.reshape(
text_masked_pos,
(-1)))) / paddle.sum((text_masked_pos) + 1e-10)
return loss_mlm, loss_text
return loss_mlm
return mlm_loss, text_mlm_loss
......@@ -393,7 +393,6 @@ def phones_masking(xs_pad: paddle.Tensor,
mean_phn_span=mean_phn_span).nonzero()
masked_start = align_start[idx][masked_phn_idxs].tolist()
masked_end = align_end[idx][masked_phn_idxs].tolist()
for s, e in zip(masked_start, masked_end):
masked_pos[idx, s:e] = 1
non_eos_mask = paddle.reshape(src_mask, paddle.shape(xs_pad)[:2])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册