提交 8f062cad 编写于 作者: H huangyuxin

fixed the small problems

上级 3fb9f688
......@@ -34,6 +34,7 @@ if __name__ == "__main__":
args = parser.parse_args()
if args.model_type is None:
args.model_type = 'offline'
print("model_type:{}".format(args.model_type))
print_arguments(args)
# https://yaml.org/type/float.html
......
......@@ -35,6 +35,7 @@ if __name__ == "__main__":
print_arguments(args, globals())
if args.model_type is None:
args.model_type = 'offline'
print("model_type:{}".format(args.model_type))
# https://yaml.org/type/float.html
config = get_cfg_defaults(args.model_type)
......
......@@ -39,6 +39,7 @@ if __name__ == "__main__":
args = parser.parse_args()
if args.model_type is None:
args.model_type = 'offline'
print("model_type:{}".format(args.model_type))
print_arguments(args, globals())
# https://yaml.org/type/float.html
......
......@@ -23,26 +23,14 @@ from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
def get_cfg_defaults(model_type='offline'):
_C = CfgNode()
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
if (model_type == 'offline'):
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.model = DeepSpeech2Model.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
else:
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.model = DeepSpeech2ModelOnline.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
......
......@@ -134,7 +134,6 @@ class DeepSpeech2Trainer(Trainer):
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
elif self.args.model_type == 'online':
print("fc_layers_size_list", config.model.fc_layers_size_list)
model = DeepSpeech2ModelOnline(
feat_size=self.train_loader.collate_fn.feature_size,
dict_size=self.train_loader.collate_fn.vocab_size,
......
......@@ -174,6 +174,7 @@ class CRNNEncoder(nn.Layer):
num_chunk = (max_len + padding_len - chunk_size) / chunk_stride + 1
num_chunk = int(num_chunk)
chunk_state_list = [None] * self.num_rnn_layers
final_chunk_state_list = None
for i in range(0, num_chunk):
start = i * chunk_stride
end = start + chunk_size
......@@ -366,4 +367,4 @@ class DeepSpeech2InferModelOnline(DeepSpeech2ModelOnline):
eouts_chunk, eouts_chunk_lens, final_state_list = self.encoder.forward_chunk(
audio_chunk, audio_chunk_lens, chunk_state_list)
probs_chunk = self.decoder.softmax(eouts_chunk)
return probs_chunk, final_state_list
return probs_chunk, eouts_chunk_lens, final_state_list
#!/bin/bash
if [ $# != 4 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path"
echo "usage: $0 config_path ckpt_prefix jit_model_path model_type"
exit -1
fi
......
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
echo "usage: ${0} config_path ckpt_path_prefix model_type"
exit -1
fi
......
#!/bin/bash
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name model_type"
exit -1
fi
......
#!/bin/bash
set -e
source path.sh
gpus=7
stage=1
stop_stage=1
conf_path=conf/deepspeech2_online.yaml
avg_num=1
model_type=online #online | offline
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}') ###ckpt = deepspeech2
echo "checkpoint name ${ckpt}"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
avg.sh exp/${ckpt}/checkpoints ${avg_num}
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册