Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
89791d7a
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89791d7a
编写于
4月 07, 2022
作者:
Honei_X
提交者:
GitHub
4月 07, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1663 from Honei/model
[vec]update the speaker verification model
上级
b02e0dae
85e4e706
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
169 addition
and
166 deletion
+169
-166
demos/speaker_verification/README.md
demos/speaker_verification/README.md
+83
-81
demos/speaker_verification/README_cn.md
demos/speaker_verification/README_cn.md
+80
-79
demos/speaker_verification/run.sh
demos/speaker_verification/run.sh
+2
-2
docs/source/released_model.md
docs/source/released_model.md
+1
-1
examples/voxceleb/sv0/RESULT.md
examples/voxceleb/sv0/RESULT.md
+1
-1
paddlespeech/cli/vector/infer.py
paddlespeech/cli/vector/infer.py
+2
-2
未找到文件。
demos/speaker_verification/README.md
浏览文件 @
89791d7a
...
...
@@ -38,6 +38,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
Arguments:
-
`input`
(required): Audio file to recognize.
-
`task`
(required): Specify
`vector`
task. Default
`spk`
。
-
`model`
: Model type of vector task. Default:
`ecapatdnn_voxceleb12`
.
-
`sample_rate`
: Sample rate of the model. Default:
`16000`
.
-
`config`
: Config of vector task. Use pretrained model when it is None. Default:
`None`
.
...
...
@@ -47,45 +48,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
Output:
```
bash
demo
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
-
11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.29473
7
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-
22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
15.999649 3.3004563 12.747926 15.429879 4.7849145
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-
11
.54324 7.681869 0.44475392 9.708182
-8
.93284
6
0.4123232
-4
.361452 1.3948607 9.511665 0.1166765
4
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
4.010979 11.000591
-2
.8873312 7.1352735
-16
.7966
3
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-
11
.924197 2.171869 2.0423572
-6
.173772 10.778437
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-
12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.2701402
-11
.508579
]
demo
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-
9
.723131 0.6619743
-6
.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.40336
7
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-
18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-
4
.473626 7.6624317
-0
.55381083 9.631587
-6
.470455
6
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.975870
4
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
-0
.31784213 9.493548 2.1144536 4.358092
-12
.08982
3
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-
9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-
8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
```
-
Python API
...
...
@@ -97,56 +98,57 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
audio_emb
=
vector_executor
(
model
=
'ecapatdnn_voxceleb12'
,
sample_rate
=
16000
,
config
=
None
,
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
audio_file
=
'./85236145389.wav'
,
force_yes
=
False
,
device
=
paddle
.
get_device
())
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
```
Output:
Output:
```
bash
# Vector Result:
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
-11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.294737
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
15.999649 3.3004563 12.747926 15.429879 4.7849145
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-11
.54324 7.681869 0.44475392 9.708182
-8
.932846
0.4123232
-4
.361452 1.3948607 9.511665 0.11667654
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
4.010979 11.000591
-2
.8873312 7.1352735
-16
.79663
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-11
.924197 2.171869 2.0423572
-6
.173772 10.778437
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.2701402
-11
.508579
]
Audio embedding Result:
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-9
.723131 0.6619743
-6
.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.403367
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-4
.473626 7.6624317
-0
.55381083 9.631587
-6
.4704556
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.9758704
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
-0
.31784213 9.493548 2.1144536 4.358092
-12
.089823
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
```
### 4.Pretrained Models
...
...
demos/speaker_verification/README_cn.md
浏览文件 @
89791d7a
...
...
@@ -37,6 +37,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
```
参数:
-
`input`
(必须输入):用于识别的音频文件。
-
`task`
(必须输入): 用于指定
`vector`
处理的具体任务,默认是
`spk`
。
-
`model`
:声纹任务的模型,默认值:
`ecapatdnn_voxceleb12`
。
-
`sample_rate`
:音频采样率,默认值:
`16000`
。
-
`config`
:声纹任务的参数文件,若不设置则使用预训练模型中的默认配置,默认值:
`None`
。
...
...
@@ -45,45 +46,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
输出:
```
bash
demo
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
-
11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.29473
7
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-
22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
15.999649 3.3004563 12.747926 15.429879 4.7849145
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-
11
.54324 7.681869 0.44475392 9.708182
-8
.93284
6
0.4123232
-4
.361452 1.3948607 9.511665 0.1166765
4
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
4.010979 11.000591
-2
.8873312 7.1352735
-16
.7966
3
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-
11
.924197 2.171869 2.0423572
-6
.173772 10.778437
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-
12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.2701402
-11
.508579
]
demo
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-
9
.723131 0.6619743
-6
.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.40336
7
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-
18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-
4
.473626 7.6624317
-0
.55381083 9.631587
-6
.470455
6
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.975870
4
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
-0
.31784213 9.493548 2.1144536 4.358092
-12
.08982
3
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-
9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-
8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
```
-
Python API
...
...
@@ -98,7 +99,6 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
config
=
None
,
# Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path
=
None
,
audio_file
=
'./85236145389.wav'
,
force_yes
=
False
,
device
=
paddle
.
get_device
())
print
(
'Audio embedding Result:
\n
{}'
.
format
(
audio_emb
))
```
...
...
@@ -106,45 +106,46 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
输出:
```
bash
# Vector Result:
[
-5
.749211 9.505463
-8
.200284
-5
.2075014 5.3940268
-3
.04878 1.611095 10.127234
-10
.534177
-15
.821609
1.2032688
-0
.35080156 1.2629458
-12
.643498
-2
.5758228
-11
.343508 2.3385992
-8
.719341 14.213509 15.404744
-0
.39327756 6.338786 2.688887 8.7104025 17.469526
-8
.77959 7.0576906 4.648855
-1
.3089896
-23
.294737
8.013747 13.891729
-9
.926753 5.655307
-5
.9422326
-22
.842539 0.6293588
-18
.46266
-10
.811862 9.8192625
3.0070958 3.8072643
-2
.3861165 3.0821571
-14
.739942
1.7594414
-0
.6485091 4.485623 2.0207152 7.264915
-6
.40137 23.63524 2.9711294
-22
.708025 9.93719
20.354511
-10
.324688
-0
.700492
-8
.783211
-5
.27593
15.999649 3.3004563 12.747926 15.429879 4.7849145
5.6699696
-2
.3826702 10.605882 3.9112158 3.1500628
15.859915
-2
.1832209
-23
.908653
-6
.4799504
-4
.5365124
-9
.224193 14.568347
-10
.568833 4.982321
-4
.342062
0.0914714 12.645902
-5
.74285
-3
.2141201
-2
.7173362
-6
.680575 0.4757669
-5
.035051
-6
.7964664 16.865469
-11
.54324 7.681869 0.44475392 9.708182
-8
.932846
0.4123232
-4
.361452 1.3948607 9.511665 0.11667654
2.9079323 6.049952 9.275183
-18
.078873 6.2983274
-0
.7500531
-2
.725033
-7
.6027865 3.3404543 2.990815
4.010979 11.000591
-2
.8873312 7.1352735
-16
.79663
18.495346
-14
.293832 7.89578 2.2714825 22.976387
-4
.875734
-3
.0836344
-2
.9999814 13.751918 6.448228
-11
.924197 2.171869 2.0423572
-6
.173772 10.778437
25.77281
-4
.9495463 14.57806 0.3044315 2.6132357
-7
.591999
-2
.076944 9.025118 1.7834753
-3
.1799617
-4
.9401326 23.465864 5.1685796
-9
.018578 9.037825
-4
.4150195 6.859591
-12
.274467
-0
.88911164 5.186309
-3
.9988663
-13
.638606
-9
.925445
-0
.06329413
-3
.6709652
-12
.397416
-12
.719869
-1
.395601 2.1150916 5.7381287
-4
.4691963
-3
.82819
-0
.84233856
-1
.1604277
-13
.490127
8.731719
-20
.778936
-11
.495662 5.8033476
-4
.752041
10.833007
-6
.717991 4.504732 13.4244375 1.1306485
7.3435574 1.400918 14.704036
-9
.501399 7.2315617
-6
.417456 1.3333273 11.872697
-0
.30664724 8.8845
6.5569253 4.7948146 0.03662816
-8
.704245 6.224871
-3
.2701402
-11
.508579
]
Audio embedding Result:
[
1.4217498 5.626253
-5
.342073 1.1773866 3.308055
1.756596 5.167894 10.80636
-3
.8226728
-5
.6141334
2.623845
-0
.8072968 1.9635103
-7
.3128724 0.01103897
-9
.723131 0.6619743
-6
.976803 10.213478 7.494748
2.9105635 3.8949256 3.7999806 7.1061673 16.905321
-7
.1493764 8.733103 3.4230042
-4
.831653
-11
.403367
11.232214 7.1274667
-4
.2828417 2.452362
-5
.130748
-18
.177666
-2
.6116815
-11
.000337
-6
.7314315 1.6564683
0.7618269 1.1253023
-2
.083836 4.725744
-8
.782597
-3
.539873 3.814236 5.1420674 2.162061 4.096431
-6
.4162116 12.747448 1.9429878
-15
.152943 6.417416
16.097002
-9
.716668
-1
.9920526
-3
.3649497
-1
.871939
11.567354 3.69788 11.258265 7.442363 9.183411
4.5281515
-1
.2417862 4.3959084 6.6727695 5.8898783
7.627124
-0
.66919386
-11
.889693
-9
.208865
-7
.4274073
-3
.7776625 6.917234
-9
.848748
-2
.0944717
-5
.135116
0.49563864 9.317534
-5
.9141874
-1
.8098574
-0
.11738578
-7
.169265
-1
.0578263
-5
.7216787
-5
.1173844 16.137651
-4
.473626 7.6624317
-0
.55381083 9.631587
-6
.4704556
-8
.548508 4.3716145
-0
.79702514 4.478997
-2
.9758704
3.272176 2.8382776 5.134597
-9
.190781
-0
.5657382
-4
.8745747 2.3165567
-5
.984303
-2
.1798875 0.35541576
-0
.31784213 9.493548 2.1144536 4.358092
-12
.089823
8.451689
-7
.925461 4.6242585 4.4289427 18.692003
-2
.6204622
-5
.149185
-0
.35821092 8.488551 4.981496
-9
.32683
-2
.2544234 6.6417594 1.2119585 10.977129
16.555033 3.3238444 9.551863
-1
.6676947
-0
.79539716
-8
.605674
-0
.47356385 2.6741948
-5
.359179
-2
.6673796
0.66607 15.443222 4.740594
-3
.4725387 11.592567
-2
.054497 1.7361217
-8
.265324
-9
.30447 5.4068313
-1
.5180256
-7
.746615
-6
.089606 0.07112726
-0
.34904733
-8
.649895
-9
.998958
-2
.564841
-0
.53999114 2.601808
-0
.31927416
-1
.8815292
-2
.07215
-3
.4105783
-8
.2998085
1.483641
-15
.365992
-8
.288208 3.8847756
-3
.4876456
7.3629923 0.4657332 3.132599 12.438889
-1
.8337058
4.532936 2.7264361 10.145339
-6
.521951 2.897153
-3
.3925855 5.079156 7.759716 4.677565 5.8457737
2.402413 7.7071047 3.9711342
-6
.390043 6.1268735
-3
.7760346
-11
.118123
]
```
### 4.预训练模型
...
...
demos/speaker_verification/run.sh
浏览文件 @
89791d7a
...
...
@@ -2,5 +2,5 @@
wget
-c
https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
# asr
paddlespeech vector
--task
spk
--input
./85236145389.wav
\ No newline at end of file
# vector
paddlespeech vector
--task
spk
--input
./85236145389.wav
docs/source/released_model.md
浏览文件 @
89791d7a
...
...
@@ -80,7 +80,7 @@ PANN | ESC-50 |[pann-esc50](../../examples/esc50/cls0)|[esc50_cnn6.tar.gz](https
Model Type | Dataset| Example Link | Pretrained Models | Static Models
:-------------:| :------------:| :-----: | :-----: | :-----:
PANN | VoxCeleb|
[
voxceleb_ecapatdnn
](
https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0
)
|
[
ecapatdnn.tar.gz
](
https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
1_1
.tar.gz
)
| -
PANN | VoxCeleb|
[
voxceleb_ecapatdnn
](
https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/voxceleb/sv0
)
|
[
ecapatdnn.tar.gz
](
https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
2_0
.tar.gz
)
| -
## Punctuation Restoration Models
Model Type | Dataset| Example Link | Pretrained Models
...
...
examples/voxceleb/sv0/RESULT.md
浏览文件 @
89791d7a
...
...
@@ -4,4 +4,4 @@
| Model | Number of Params | Release | Config | dim | Test set | Cosine | Cosine + S-Norm |
| --- | --- | --- | --- | --- | --- | --- | ---- |
| ECAPA-TDNN | 85M | 0.
1.1 | conf/ecapa_tdnn.yaml |192 | test | 1.15 | 1.06
|
| ECAPA-TDNN | 85M | 0.
2.0 | conf/ecapa_tdnn.yaml |192 | test | 1.02 | 0.95
|
paddlespeech/cli/vector/infer.py
浏览文件 @
89791d7a
...
...
@@ -42,9 +42,9 @@ pretrained_models = {
# "paddlespeech vector --task spk --model ecapatdnn_voxceleb12-16k --sr 16000 --input ./input.wav"
"ecapatdnn_voxceleb12-16k"
:
{
'url'
:
'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
1_1
.tar.gz'
,
'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_
2_0
.tar.gz'
,
'md5'
:
'
a1c0dba7d4de997187786ff517d5b4ec
'
,
'
cc33023c54ab346cd318408f43fcaf95
'
,
'cfg_path'
:
'conf/model.yaml'
,
# the yaml config path
'ckpt_path'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录