Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
880829fe
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 1 年 前同步成功
通知
207
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
880829fe
编写于
4月 19, 2022
作者:
Q
qingen
提交者:
GitHub
4月 19, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1681 from qingen/cluster
[vec][score] add plda model
上级
7220b11b
159d8fd6
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
771 addition
and
5 deletion
+771
-5
paddlespeech/vector/cluster/diarization.py
paddlespeech/vector/cluster/diarization.py
+194
-3
paddlespeech/vector/cluster/plda.py
paddlespeech/vector/cluster/plda.py
+575
-0
paddlespeech/vector/io/dataset_from_json.py
paddlespeech/vector/io/dataset_from_json.py
+2
-2
未找到文件。
paddlespeech/vector/cluster/diarization.py
浏览文件 @
880829fe
# Copyright (c) 2022 SpeechBrain Authors. All Rights Reserved.
# Copyright (c) 2022
PaddlePaddle and
SpeechBrain Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -18,12 +18,14 @@ This script has an optional dependency on open source sklearn library.
A few sklearn functions are modified in this script as per requirement.
"""
import
argparse
import
copy
import
warnings
from
distutils.util
import
strtobool
import
numpy
as
np
import
scipy
import
sklearn
from
scipy
import
linalg
from
scipy
import
sparse
from
scipy.sparse.csgraph
import
connected_components
from
scipy.sparse.csgraph
import
laplacian
as
csgraph_laplacian
...
...
@@ -346,6 +348,8 @@ class EmbeddingMeta:
---------
segset : list
List of session IDs as an array of strings.
modelset : list
List of model IDs as an array of strings.
stats : tensor
An ndarray of float64. Each line contains embedding
from the corresponding session.
...
...
@@ -354,15 +358,20 @@ class EmbeddingMeta:
def
__init__
(
self
,
segset
=
None
,
modelset
=
None
,
stats
=
None
,
):
if
segset
is
None
:
self
.
segset
=
numpy
.
empty
(
0
,
dtype
=
"|O"
)
self
.
stats
=
numpy
.
array
([],
dtype
=
np
.
float64
)
self
.
segset
=
np
.
empty
(
0
,
dtype
=
"|O"
)
self
.
modelset
=
np
.
empty
(
0
,
dtype
=
"|O"
)
self
.
stats
=
np
.
array
([],
dtype
=
np
.
float64
)
else
:
self
.
segset
=
segset
self
.
modelset
=
modelset
self
.
stats
=
stats
self
.
stat0
=
np
.
array
([[
1.0
]]
*
self
.
stats
.
shape
[
0
])
def
norm_stats
(
self
):
"""
Divide all first-order statistics by their Euclidean norm.
...
...
@@ -371,6 +380,188 @@ class EmbeddingMeta:
vect_norm
=
np
.
clip
(
np
.
linalg
.
norm
(
self
.
stats
,
axis
=
1
),
1e-08
,
np
.
inf
)
self
.
stats
=
(
self
.
stats
.
transpose
()
/
vect_norm
).
transpose
()
def
get_mean_stats
(
self
):
"""
Return the mean of first order statistics.
"""
mu
=
np
.
mean
(
self
.
stats
,
axis
=
0
)
return
mu
def
get_total_covariance_stats
(
self
):
"""
Compute and return the total covariance matrix of the first-order statistics.
"""
C
=
self
.
stats
-
self
.
stats
.
mean
(
axis
=
0
)
return
np
.
dot
(
C
.
transpose
(),
C
)
/
self
.
stats
.
shape
[
0
]
def
get_model_stat0
(
self
,
mod_id
):
"""Return zero-order statistics of a given model
Arguments
---------
mod_id : str
ID of the model which stat0 will be returned.
"""
S
=
self
.
stat0
[
self
.
modelset
==
mod_id
,
:]
return
S
def
get_model_stats
(
self
,
mod_id
):
"""Return first-order statistics of a given model.
Arguments
---------
mod_id : str
ID of the model which stat1 will be returned.
"""
return
self
.
stats
[
self
.
modelset
==
mod_id
,
:]
def
sum_stat_per_model
(
self
):
"""
Sum the zero- and first-order statistics per model and store them
in a new EmbeddingMeta.
Returns a EmbeddingMeta object with the statistics summed per model
and a numpy array with session_per_model.
"""
sts_per_model
=
EmbeddingMeta
()
sts_per_model
.
modelset
=
np
.
unique
(
self
.
modelset
)
# nd: get uniq spkr ids
sts_per_model
.
segset
=
copy
.
deepcopy
(
sts_per_model
.
modelset
)
sts_per_model
.
stat0
=
np
.
zeros
(
(
sts_per_model
.
modelset
.
shape
[
0
],
self
.
stat0
.
shape
[
1
]),
dtype
=
np
.
float64
,
)
sts_per_model
.
stats
=
np
.
zeros
(
(
sts_per_model
.
modelset
.
shape
[
0
],
self
.
stats
.
shape
[
1
]),
dtype
=
np
.
float64
,
)
session_per_model
=
np
.
zeros
(
np
.
unique
(
self
.
modelset
).
shape
[
0
])
# For each model sum the stats
for
idx
,
model
in
enumerate
(
sts_per_model
.
modelset
):
sts_per_model
.
stat0
[
idx
,
:]
=
self
.
get_model_stat0
(
model
).
sum
(
axis
=
0
)
sts_per_model
.
stats
[
idx
,
:]
=
self
.
get_model_stats
(
model
).
sum
(
axis
=
0
)
session_per_model
[
idx
]
+=
self
.
get_model_stats
(
model
).
shape
[
0
]
return
sts_per_model
,
session_per_model
def
center_stats
(
self
,
mu
):
"""
Center first order statistics.
Arguments
---------
mu : array
Array to center on.
"""
dim
=
self
.
stats
.
shape
[
1
]
/
self
.
stat0
.
shape
[
1
]
index_map
=
np
.
repeat
(
np
.
arange
(
self
.
stat0
.
shape
[
1
]),
dim
)
self
.
stats
=
self
.
stats
-
(
self
.
stat0
[:,
index_map
]
*
mu
.
astype
(
np
.
float64
))
def
rotate_stats
(
self
,
R
):
"""
Rotate first-order statistics by a right-product.
Arguments
---------
R : ndarray
Matrix to use for right product on the first order statistics.
"""
self
.
stats
=
np
.
dot
(
self
.
stats
,
R
)
def
whiten_stats
(
self
,
mu
,
sigma
,
isSqrInvSigma
=
False
):
"""
Whiten first-order statistics
If sigma.ndim == 1, case of a diagonal covariance.
If sigma.ndim == 2, case of a single Gaussian with full covariance.
If sigma.ndim == 3, case of a full covariance UBM.
Arguments
---------
mu : array
Mean vector to be subtracted from the statistics.
sigma : narray
Co-variance matrix or covariance super-vector.
isSqrInvSigma : bool
True if the input Sigma matrix is the inverse of the square root of a covariance matrix.
"""
if
sigma
.
ndim
==
1
:
self
.
center_stats
(
mu
)
self
.
stats
=
self
.
stats
/
np
.
sqrt
(
sigma
.
astype
(
np
.
float64
))
elif
sigma
.
ndim
==
2
:
# Compute the inverse square root of the co-variance matrix Sigma
sqr_inv_sigma
=
sigma
if
not
isSqrInvSigma
:
# eigen_values, eigen_vectors = scipy.linalg.eigh(sigma)
eigen_values
,
eigen_vectors
=
linalg
.
eigh
(
sigma
)
ind
=
eigen_values
.
real
.
argsort
()[::
-
1
]
eigen_values
=
eigen_values
.
real
[
ind
]
eigen_vectors
=
eigen_vectors
.
real
[:,
ind
]
sqr_inv_eval_sigma
=
1
/
np
.
sqrt
(
eigen_values
.
real
)
sqr_inv_sigma
=
np
.
dot
(
eigen_vectors
,
np
.
diag
(
sqr_inv_eval_sigma
))
else
:
pass
# Whitening of the first-order statistics
self
.
center_stats
(
mu
)
# CENTERING
self
.
rotate_stats
(
sqr_inv_sigma
)
elif
sigma
.
ndim
==
3
:
# we assume that sigma is a 3D ndarray of size D x n x n
# where D is the number of distributions and n is the dimension of a single distribution
n
=
self
.
stats
.
shape
[
1
]
//
self
.
stat0
.
shape
[
1
]
sess_nb
=
self
.
stat0
.
shape
[
0
]
self
.
center_stats
(
mu
)
self
.
stats
=
(
np
.
einsum
(
"ikj,ikl->ilj"
,
self
.
stats
.
T
.
reshape
(
-
1
,
n
,
sess_nb
),
sigma
)
.
reshape
(
-
1
,
sess_nb
).
T
)
else
:
raise
Exception
(
"Wrong dimension of Sigma, must be 1 or 2"
)
def
align_models
(
self
,
model_list
):
"""
Align models of the current EmbeddingMeta to match a list of models
provided as input parameter. The size of the StatServer might be
reduced to match the input list of models.
Arguments
---------
model_list : ndarray of strings
List of models to match.
"""
indx
=
np
.
array
(
[
np
.
argwhere
(
self
.
modelset
==
v
)[
0
][
0
]
for
v
in
model_list
])
self
.
segset
=
self
.
segset
[
indx
]
self
.
modelset
=
self
.
modelset
[
indx
]
self
.
stat0
=
self
.
stat0
[
indx
,
:]
self
.
stats
=
self
.
stats
[
indx
,
:]
def
align_segments
(
self
,
segment_list
):
"""
Align segments of the current EmbeddingMeta to match a list of segment
provided as input parameter. The size of the StatServer might be
reduced to match the input list of segments.
Arguments
---------
segment_list: ndarray of strings
list of segments to match
"""
indx
=
np
.
array
(
[
np
.
argwhere
(
self
.
segset
==
v
)[
0
][
0
]
for
v
in
segment_list
])
self
.
segset
=
self
.
segset
[
indx
]
self
.
modelset
=
self
.
modelset
[
indx
]
self
.
stat0
=
self
.
stat0
[
indx
,
:]
self
.
stats
=
self
.
stats
[
indx
,
:]
class
SpecClustUnorm
:
"""
...
...
paddlespeech/vector/cluster/plda.py
0 → 100644
浏览文件 @
880829fe
此差异已折叠。
点击以展开。
paddlespeech/vector/io/dataset_from_json.py
浏览文件 @
880829fe
...
...
@@ -26,14 +26,14 @@ from paddleaudio.compliance.librosa import mfcc
class
meta_info
:
"""the audio meta info in the vector JSONDataset
Args:
id (str): the segment name
utt_
id (str): the segment name
duration (float): segment time
wav (str): wav file path
start (int): start point in the original wav file
stop (int): stop point in the original wav file
lab_id (str): the record id
"""
id
:
str
utt_
id
:
str
duration
:
float
wav
:
str
start
:
int
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录