Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
8690a00b
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8690a00b
编写于
9月 13, 2022
作者:
H
Hui Zhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add feature pipeline layer(cmvn, fbank), but to_static and jit.layer output is not equal
上级
67709155
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
206 addition
and
36 deletion
+206
-36
paddlespeech/audio/compliance/kaldi.py
paddlespeech/audio/compliance/kaldi.py
+11
-11
paddlespeech/s2t/exps/u2/bin/test_wav.py
paddlespeech/s2t/exps/u2/bin/test_wav.py
+3
-0
paddlespeech/s2t/exps/u2/model.py
paddlespeech/s2t/exps/u2/model.py
+51
-24
paddlespeech/s2t/models/u2/u2.py
paddlespeech/s2t/models/u2/u2.py
+58
-0
paddlespeech/s2t/modules/cmvn.py
paddlespeech/s2t/modules/cmvn.py
+9
-1
paddlespeech/s2t/modules/fbank.py
paddlespeech/s2t/modules/fbank.py
+74
-0
未找到文件。
paddlespeech/audio/compliance/kaldi.py
浏览文件 @
8690a00b
...
@@ -74,16 +74,16 @@ def _feature_window_function(
...
@@ -74,16 +74,16 @@ def _feature_window_function(
window_size
:
int
,
window_size
:
int
,
blackman_coeff
:
float
,
blackman_coeff
:
float
,
dtype
:
int
,
)
->
Tensor
:
dtype
:
int
,
)
->
Tensor
:
if
window_type
==
HANNING
:
if
window_type
==
"hann"
:
return
get_window
(
'hann'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
)
return
get_window
(
'hann'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
)
elif
window_type
==
HAMMING
:
elif
window_type
==
"hamming"
:
return
get_window
(
'hamming'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
)
return
get_window
(
'hamming'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
)
elif
window_type
==
POVEY
:
elif
window_type
==
"povey"
:
return
get_window
(
return
get_window
(
'hann'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
).
pow
(
0.85
)
'hann'
,
window_size
,
fftbins
=
False
,
dtype
=
dtype
).
pow
(
0.85
)
elif
window_type
==
RECTANGULAR
:
elif
window_type
==
"rect"
:
return
paddle
.
ones
([
window_size
],
dtype
=
dtype
)
return
paddle
.
ones
([
window_size
],
dtype
=
dtype
)
elif
window_type
==
BLACKMAN
:
elif
window_type
==
"blackman"
:
a
=
2
*
math
.
pi
/
(
window_size
-
1
)
a
=
2
*
math
.
pi
/
(
window_size
-
1
)
window_function
=
paddle
.
arange
(
window_size
,
dtype
=
dtype
)
window_function
=
paddle
.
arange
(
window_size
,
dtype
=
dtype
)
return
(
blackman_coeff
-
0.5
*
paddle
.
cos
(
a
*
window_function
)
+
return
(
blackman_coeff
-
0.5
*
paddle
.
cos
(
a
*
window_function
)
+
...
@@ -216,7 +216,7 @@ def spectrogram(waveform: Tensor,
...
@@ -216,7 +216,7 @@ def spectrogram(waveform: Tensor,
sr
:
int
=
16000
,
sr
:
int
=
16000
,
snip_edges
:
bool
=
True
,
snip_edges
:
bool
=
True
,
subtract_mean
:
bool
=
False
,
subtract_mean
:
bool
=
False
,
window_type
:
str
=
POVEY
)
->
Tensor
:
window_type
:
str
=
"povey"
)
->
Tensor
:
"""Compute and return a spectrogram from a waveform. The output is identical to Kaldi's.
"""Compute and return a spectrogram from a waveform. The output is identical to Kaldi's.
Args:
Args:
...
@@ -236,7 +236,7 @@ def spectrogram(waveform: Tensor,
...
@@ -236,7 +236,7 @@ def spectrogram(waveform: Tensor,
snip_edges (bool, optional): Drop samples in the end of waveform that cann't fit a singal frame when it
snip_edges (bool, optional): Drop samples in the end of waveform that cann't fit a singal frame when it
is set True. Otherwise performs reflect padding to the end of waveform. Defaults to True.
is set True. Otherwise performs reflect padding to the end of waveform. Defaults to True.
subtract_mean (bool, optional): Whether to subtract mean of feature files. Defaults to False.
subtract_mean (bool, optional): Whether to subtract mean of feature files. Defaults to False.
window_type (str, optional): Choose type of window for FFT computation. Defaults to
POVEY
.
window_type (str, optional): Choose type of window for FFT computation. Defaults to
"povey"
.
Returns:
Returns:
Tensor: A spectrogram tensor with shape `(m, padded_window_size // 2 + 1)` where m is the number of frames
Tensor: A spectrogram tensor with shape `(m, padded_window_size // 2 + 1)` where m is the number of frames
...
@@ -418,11 +418,11 @@ def fbank(waveform: Tensor,
...
@@ -418,11 +418,11 @@ def fbank(waveform: Tensor,
vtln_high
:
float
=-
500.0
,
vtln_high
:
float
=-
500.0
,
vtln_low
:
float
=
100.0
,
vtln_low
:
float
=
100.0
,
vtln_warp
:
float
=
1.0
,
vtln_warp
:
float
=
1.0
,
window_type
:
str
=
POVEY
)
->
Tensor
:
window_type
:
str
=
"povey"
)
->
Tensor
:
"""Compute and return filter banks from a waveform. The output is identical to Kaldi's.
"""Compute and return filter banks from a waveform. The output is identical to Kaldi's.
Args:
Args:
waveform (Tensor): A waveform tensor with shape `(C, T)`.
waveform (Tensor): A waveform tensor with shape `(C, T)`.
`C` is in the range [0,1].
blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42.
blackman_coeff (float, optional): Coefficient for Blackman window.. Defaults to 0.42.
channel (int, optional): Select the channel of waveform. Defaults to -1.
channel (int, optional): Select the channel of waveform. Defaults to -1.
dither (float, optional): Dithering constant . Defaults to 0.0.
dither (float, optional): Dithering constant . Defaults to 0.0.
...
@@ -448,7 +448,7 @@ def fbank(waveform: Tensor,
...
@@ -448,7 +448,7 @@ def fbank(waveform: Tensor,
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function. Defaults to -500.0.
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function. Defaults to -500.0.
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function. Defaults to 100.0.
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function. Defaults to 100.0.
vtln_warp (float, optional): Vtln warp factor. Defaults to 1.0.
vtln_warp (float, optional): Vtln warp factor. Defaults to 1.0.
window_type (str, optional): Choose type of window for FFT computation. Defaults to
POVEY
.
window_type (str, optional): Choose type of window for FFT computation. Defaults to
"povey"
.
Returns:
Returns:
Tensor: A filter banks tensor with shape `(m, n_mels)`.
Tensor: A filter banks tensor with shape `(m, n_mels)`.
...
@@ -537,7 +537,7 @@ def mfcc(waveform: Tensor,
...
@@ -537,7 +537,7 @@ def mfcc(waveform: Tensor,
vtln_high
:
float
=-
500.0
,
vtln_high
:
float
=-
500.0
,
vtln_low
:
float
=
100.0
,
vtln_low
:
float
=
100.0
,
vtln_warp
:
float
=
1.0
,
vtln_warp
:
float
=
1.0
,
window_type
:
str
=
POVEY
)
->
Tensor
:
window_type
:
str
=
"povey"
)
->
Tensor
:
"""Compute and return mel frequency cepstral coefficients from a waveform. The output is
"""Compute and return mel frequency cepstral coefficients from a waveform. The output is
identical to Kaldi's.
identical to Kaldi's.
...
...
paddlespeech/s2t/exps/u2/bin/test_wav.py
浏览文件 @
8690a00b
...
@@ -18,6 +18,7 @@ from pathlib import Path
...
@@ -18,6 +18,7 @@ from pathlib import Path
import
paddle
import
paddle
import
soundfile
import
soundfile
import
numpy
as
np
from
yacs.config
import
CfgNode
from
yacs.config
import
CfgNode
from
paddlespeech.audio.transform.transformation
import
Transformation
from
paddlespeech.audio.transform.transformation
import
Transformation
...
@@ -77,6 +78,8 @@ class U2Infer():
...
@@ -77,6 +78,8 @@ class U2Infer():
feat
=
self
.
preprocessing
(
audio
,
**
self
.
preprocess_args
)
feat
=
self
.
preprocessing
(
audio
,
**
self
.
preprocess_args
)
logger
.
info
(
f
"feat shape:
{
feat
.
shape
}
"
)
logger
.
info
(
f
"feat shape:
{
feat
.
shape
}
"
)
np
.
savetxt
(
"feat.transform.txt"
,
feat
)
ilen
=
paddle
.
to_tensor
(
feat
.
shape
[
0
])
ilen
=
paddle
.
to_tensor
(
feat
.
shape
[
0
])
xs
=
paddle
.
to_tensor
(
feat
,
dtype
=
'float32'
).
unsqueeze
(
axis
=
0
)
xs
=
paddle
.
to_tensor
(
feat
,
dtype
=
'float32'
).
unsqueeze
(
axis
=
0
)
decode_config
=
self
.
config
.
decode
decode_config
=
self
.
config
.
decode
...
...
paddlespeech/s2t/exps/u2/model.py
浏览文件 @
8690a00b
...
@@ -474,13 +474,20 @@ class U2Tester(U2Trainer):
...
@@ -474,13 +474,20 @@ class U2Tester(U2Trainer):
def
export
(
self
):
def
export
(
self
):
infer_model
,
input_spec
=
self
.
load_inferspec
()
infer_model
,
input_spec
=
self
.
load_inferspec
()
infer_model
.
eval
()
infer_model
.
eval
()
paddle
.
set_device
(
'cpu'
)
assert
isinstance
(
input_spec
,
list
),
type
(
input_spec
)
assert
isinstance
(
input_spec
,
(
list
,
tuple
)
),
type
(
input_spec
)
batch_size
,
feat_dim
,
model_size
,
num_left_chunks
=
input_spec
batch_size
,
feat_dim
,
model_size
,
num_left_chunks
=
input_spec
######################### infer_model.forward_encoder_chunk zero tensor online ############
######################## infer_model.forward_encoder_chunk ############
# TODO: 80(feature dim) be configable
input_spec
=
[
# (T,), int16
paddle
.
static
.
InputSpec
(
shape
=
[
None
],
dtype
=
'int16'
),
]
infer_model
.
forward_feature
=
paddle
.
jit
.
to_static
(
infer_model
.
forward_feature
,
input_spec
=
input_spec
)
######################### infer_model.forward_encoder_chunk ############
input_spec
=
[
input_spec
=
[
# xs, (B, T, D)
# xs, (B, T, D)
paddle
.
static
.
InputSpec
(
shape
=
[
batch_size
,
None
,
feat_dim
],
dtype
=
'float32'
),
paddle
.
static
.
InputSpec
(
shape
=
[
batch_size
,
None
,
feat_dim
],
dtype
=
'float32'
),
...
@@ -499,8 +506,16 @@ class U2Tester(U2Trainer):
...
@@ -499,8 +506,16 @@ class U2Tester(U2Trainer):
infer_model
.
forward_encoder_chunk
=
paddle
.
jit
.
to_static
(
infer_model
.
forward_encoder_chunk
=
paddle
.
jit
.
to_static
(
infer_model
.
forward_encoder_chunk
,
input_spec
=
input_spec
)
infer_model
.
forward_encoder_chunk
,
input_spec
=
input_spec
)
######################### infer_model.ctc_activation ########################
input_spec
=
[
# encoder_out, (B,T,D)
paddle
.
static
.
InputSpec
(
shape
=
[
batch_size
,
None
,
model_size
],
dtype
=
'float32'
)
]
infer_model
.
ctc_activation
=
paddle
.
jit
.
to_static
(
infer_model
.
ctc_activation
,
input_spec
=
input_spec
)
######################### infer_model.forward_attention_decoder ########################
######################### infer_model.forward_attention_decoder ########################
# TODO: 512(encoder_output) be configable. 1 for BatchSize
input_spec
=
[
input_spec
=
[
# hyps, (B, U)
# hyps, (B, U)
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
None
],
dtype
=
'int64'
),
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
None
],
dtype
=
'int64'
),
...
@@ -512,17 +527,11 @@ class U2Tester(U2Trainer):
...
@@ -512,17 +527,11 @@ class U2Tester(U2Trainer):
infer_model
.
forward_attention_decoder
=
paddle
.
jit
.
to_static
(
infer_model
.
forward_attention_decoder
=
paddle
.
jit
.
to_static
(
infer_model
.
forward_attention_decoder
,
input_spec
=
input_spec
)
infer_model
.
forward_attention_decoder
,
input_spec
=
input_spec
)
######################### infer_model.ctc_activation ########################
input_spec
=
[
# encoder_out, (B,T,D)
paddle
.
static
.
InputSpec
(
shape
=
[
batch_size
,
None
,
model_size
],
dtype
=
'float32'
)
]
infer_model
.
ctc_activation
=
paddle
.
jit
.
to_static
(
infer_model
.
ctc_activation
,
input_spec
=
input_spec
)
# jit save
# jit save
logger
.
info
(
f
"export save:
{
self
.
args
.
export_path
}
"
)
paddle
.
jit
.
save
(
infer_model
,
self
.
args
.
export_path
,
combine_params
=
True
,
skip_forward
=
True
)
paddle
.
jit
.
save
(
infer_model
,
self
.
args
.
export_path
,
combine_params
=
True
,
skip_forward
=
True
)
# test dy2static
# test dy2static
def
flatten
(
out
):
def
flatten
(
out
):
if
isinstance
(
out
,
paddle
.
Tensor
):
if
isinstance
(
out
,
paddle
.
Tensor
):
...
@@ -536,26 +545,44 @@ class U2Tester(U2Trainer):
...
@@ -536,26 +545,44 @@ class U2Tester(U2Trainer):
flatten_out
.
append
(
var
)
flatten_out
.
append
(
var
)
return
flatten_out
return
flatten_out
xs1
=
paddle
.
rand
(
shape
=
[
1
,
67
,
80
],
dtype
=
'float32'
)
# forward_encoder_chunk dygraph
xs1
=
paddle
.
full
([
1
,
67
,
80
],
0.1
,
dtype
=
'float32'
)
offset
=
paddle
.
to_tensor
([
0
],
dtype
=
'int32'
)
offset
=
paddle
.
to_tensor
([
0
],
dtype
=
'int32'
)
required_cache_size
=
num_left_chunks
required_cache_size
=
num_left_chunks
att_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
att_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
cnn_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
cnn_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
xs_d
,
att_cache_d
,
cnn_cache_d
=
infer_model
.
forward_encoder_chunk
(
xs1
,
offset
,
required_cache_size
,
att_cache
,
cnn_cache
)
xs
,
att_cache
,
cnn_cache
=
infer_model
.
forward_encoder_chunk
(
xs1
,
offset
,
required_cache_size
,
att_cache
,
cnn_cache
)
xs2
=
paddle
.
rand
(
shape
=
[
1
,
67
,
80
],
dtype
=
'float32'
)
import
soundfile
offset
=
paddle
.
to_tensor
([
16
],
dtype
=
'int32'
)
audio
,
sample_rate
=
soundfile
.
read
(
out1
=
infer_model
.
forward_encoder_chunk
(
xs2
,
offset
,
required_cache_size
,
att_cache
,
cnn_cache
)
'./zh.wav'
,
dtype
=
"int16"
,
always_2d
=
True
)
print
(
'py encoder'
,
out1
)
audio
=
audio
[:,
0
]
logger
.
info
(
f
"audio shape:
{
audio
.
shape
}
"
)
audio
=
paddle
.
to_tensor
(
audio
,
paddle
.
int16
)
feat_d
=
infer_model
.
forward_feature
(
audio
)
logger
.
info
(
f
"
{
feat_d
}
"
)
np
.
savetxt
(
"feat.tostatic.txt"
,
feat_d
)
# load static model
from
paddle.jit.layer
import
Layer
from
paddle.jit.layer
import
Layer
layer
=
Layer
()
layer
=
Layer
()
layer
.
load
(
self
.
args
.
export_path
,
paddle
.
CPUPlace
())
layer
.
load
(
self
.
args
.
export_path
,
paddle
.
CPUPlace
())
xs1
=
paddle
.
full
([
1
,
7
,
80
],
0.1
,
dtype
=
'float32'
)
# forward_encoder_chunk static
xs1
=
paddle
.
full
([
1
,
67
,
80
],
0.1
,
dtype
=
'float32'
)
offset
=
paddle
.
to_tensor
([
0
],
dtype
=
'int32'
)
offset
=
paddle
.
to_tensor
([
0
],
dtype
=
'int32'
)
att_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
att_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
cnn_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
cnn_cache
=
paddle
.
zeros
([
0
,
0
,
0
,
0
])
func
=
getattr
(
layer
,
'forward_encoder_chunk'
)
func
=
getattr
(
layer
,
'forward_encoder_chunk'
)
xs
,
att_cache
,
cnn_cache
=
func
(
xs1
,
offset
,
att_cache
,
cnn_cache
)
xs_s
,
att_cache_s
,
cnn_cache_s
=
func
(
xs1
,
offset
,
att_cache
,
cnn_cache
)
print
(
'py static encoder'
,
xs
)
np
.
testing
.
assert_allclose
(
xs_d
,
xs_s
,
atol
=
1e-5
)
np
.
testing
.
assert_allclose
(
att_cache_d
,
att_cache_s
,
atol
=
1e-4
)
np
.
testing
.
assert_allclose
(
cnn_cache_d
,
cnn_cache_s
,
atol
=
1e-4
)
# logger.info(f"forward_encoder_chunk output: {xs_s}")
# forward_feature static
func
=
getattr
(
layer
,
'forward_feature'
)
feat_s
=
func
(
audio
)[
0
]
logger
.
info
(
f
"
{
feat_s
}
"
)
np
.
testing
.
assert_allclose
(
feat_d
,
feat_s
,
atol
=
1e-5
)
paddlespeech/s2t/models/u2/u2.py
浏览文件 @
8690a00b
...
@@ -916,6 +916,50 @@ class U2InferModel(U2Model):
...
@@ -916,6 +916,50 @@ class U2InferModel(U2Model):
def
__init__
(
self
,
configs
:
dict
):
def
__init__
(
self
,
configs
:
dict
):
super
().
__init__
(
configs
)
super
().
__init__
(
configs
)
from
paddlespeech.s2t.modules.fbank
import
KaldiFbank
import
yaml
import
json
import
numpy
as
np
input_dim
=
configs
[
'input_dim'
]
process
=
configs
[
'preprocess_config'
]
with
open
(
process
,
encoding
=
"utf-8"
)
as
f
:
conf
=
yaml
.
safe_load
(
f
)
assert
isinstance
(
conf
,
dict
),
type
(
self
.
conf
)
for
idx
,
process
in
enumerate
(
conf
[
'process'
]):
assert
isinstance
(
process
,
dict
),
type
(
process
)
opts
=
dict
(
process
)
process_type
=
opts
.
pop
(
"type"
)
if
process_type
==
'fbank_kaldi'
:
opts
.
update
({
'n_mels'
:
input_dim
})
opts
[
'dither'
]
=
0.0
self
.
fbank
=
KaldiFbank
(
**
opts
)
logger
.
info
(
f
"
{
self
.
__class__
.
__name__
}
export:
{
self
.
fbank
}
"
)
if
process_type
==
'cmvn_json'
:
# align with paddlespeech.audio.transform.cmvn:GlobalCMVN
std_floor
=
1.0e-20
cmvn
=
opts
[
'cmvn_path'
]
if
isinstance
(
cmvn
,
dict
):
cmvn_stats
=
cmvn
else
:
with
open
(
cmvn
)
as
f
:
cmvn_stats
=
json
.
load
(
f
)
count
=
cmvn_stats
[
'frame_num'
]
mean
=
np
.
array
(
cmvn_stats
[
'mean_stat'
])
/
count
square_sums
=
np
.
array
(
cmvn_stats
[
'var_stat'
])
var
=
square_sums
/
count
-
mean
**
2
std
=
np
.
maximum
(
np
.
sqrt
(
var
),
std_floor
)
istd
=
1.0
/
std
self
.
global_cmvn
=
GlobalCMVN
(
paddle
.
to_tensor
(
mean
,
dtype
=
paddle
.
float
),
paddle
.
to_tensor
(
istd
,
dtype
=
paddle
.
float
))
logger
.
info
(
f
"
{
self
.
__class__
.
__name__
}
export:
{
self
.
global_cmvn
}
"
)
def
forward
(
self
,
def
forward
(
self
,
feats
,
feats
,
feats_lengths
,
feats_lengths
,
...
@@ -939,3 +983,17 @@ class U2InferModel(U2Model):
...
@@ -939,3 +983,17 @@ class U2InferModel(U2Model):
# num_decoding_left_chunks=num_decoding_left_chunks,
# num_decoding_left_chunks=num_decoding_left_chunks,
# simulate_streaming=simulate_streaming)
# simulate_streaming=simulate_streaming)
return
feats
,
feats_lengths
return
feats
,
feats_lengths
def
forward_feature
(
self
,
x
):
"""feature pipeline.
Args:
x (paddle.Tensor): waveform (T,).
Return:
feat (paddle.Tensor): feature (T, D)
"""
x
=
paddle
.
cast
(
x
,
paddle
.
float32
)
feat
=
self
.
fbank
(
x
)
feat
=
self
.
global_cmvn
(
feat
)
return
feat
\ No newline at end of file
paddlespeech/s2t/modules/cmvn.py
浏览文件 @
8690a00b
...
@@ -40,6 +40,14 @@ class GlobalCMVN(nn.Layer):
...
@@ -40,6 +40,14 @@ class GlobalCMVN(nn.Layer):
self
.
register_buffer
(
"mean"
,
mean
)
self
.
register_buffer
(
"mean"
,
mean
)
self
.
register_buffer
(
"istd"
,
istd
)
self
.
register_buffer
(
"istd"
,
istd
)
def
__repr__
(
self
):
return
(
"{name}(mean={mean}, istd={istd}, norm_var={norm_var})"
.
format
(
name
=
self
.
__class__
.
__name__
,
mean
=
self
.
mean
,
istd
=
self
.
istd
,
norm_var
=
self
.
norm_var
))
def
forward
(
self
,
x
:
paddle
.
Tensor
):
def
forward
(
self
,
x
:
paddle
.
Tensor
):
"""
"""
Args:
Args:
...
@@ -50,4 +58,4 @@ class GlobalCMVN(nn.Layer):
...
@@ -50,4 +58,4 @@ class GlobalCMVN(nn.Layer):
x
=
x
-
self
.
mean
x
=
x
-
self
.
mean
if
self
.
norm_var
:
if
self
.
norm_var
:
x
=
x
*
self
.
istd
x
=
x
*
self
.
istd
return
x
return
x
\ No newline at end of file
paddlespeech/s2t/modules/fbank.py
0 → 100644
浏览文件 @
8690a00b
import
paddle
from
paddle
import
nn
from
paddlespeech.audio.compliance
import
kaldi
from
paddlespeech.s2t.utils.log
import
Log
logger
=
Log
(
__name__
).
getlog
()
__all__
=
[
'KaldiFbank'
]
class
KaldiFbank
(
nn
.
Layer
):
def
__init__
(
self
,
fs
=
16000
,
n_mels
=
80
,
n_shift
=
160
,
# unit:sample, 10ms
win_length
=
400
,
# unit:sample, 25ms
energy_floor
=
0.0
,
dither
=
0.0
):
"""
Args:
fs (int): sample rate of the audio
n_mels (int): number of mel filter banks
n_shift (int): number of points in a frame shift
win_length (int): number of points in a frame windows
energy_floor (float): Floor on energy in Spectrogram computation (absolute)
dither (float): Dithering constant. Default 0.0
"""
super
().
__init__
()
self
.
fs
=
fs
self
.
n_mels
=
n_mels
num_point_ms
=
fs
/
1000
self
.
n_frame_length
=
win_length
/
num_point_ms
self
.
n_frame_shift
=
n_shift
/
num_point_ms
self
.
energy_floor
=
energy_floor
self
.
dither
=
dither
def
__repr__
(
self
):
return
(
"{name}(fs={fs}, n_mels={n_mels}, "
"n_frame_shift={n_frame_shift}, n_frame_length={n_frame_length}, "
"dither={dither}))"
.
format
(
name
=
self
.
__class__
.
__name__
,
fs
=
self
.
fs
,
n_mels
=
self
.
n_mels
,
n_frame_shift
=
self
.
n_frame_shift
,
n_frame_length
=
self
.
n_frame_length
,
dither
=
self
.
dither
,
))
def
forward
(
self
,
x
:
paddle
.
Tensor
):
"""
Args:
x (paddle.Tensor): shape (Ti).
Not support: [Time, Channel] and Batch mode.
Returns:
paddle.Tensor: (T, D)
"""
assert
x
.
ndim
==
1
feat
=
kaldi
.
fbank
(
x
.
unsqueeze
(
0
),
# append channel dim, (C, Ti)
n_mels
=
self
.
n_mels
,
frame_length
=
self
.
n_frame_length
,
frame_shift
=
self
.
n_frame_shift
,
dither
=
self
.
dither
,
energy_floor
=
self
.
energy_floor
,
sr
=
self
.
fs
)
assert
feat
.
ndim
==
2
# (T,D)
return
feat
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录