提交 7b649af8 编写于 作者: H Hui Zhang

add batchfy

上级 e00567bb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import logger
import numpy as np
from deepspeech.utils.log import Log
__all__ = ["make_batchset"]
logger = Log(__name__).getlog()
def batchfy_by_seq(
sorted_data,
batch_size,
max_length_in,
max_length_out,
min_batch_size=1,
shortest_first=False,
ikey="input",
iaxis=0,
okey="output",
oaxis=0, ):
"""Make batch set from json dictionary
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
:param int batch_size: batch size
:param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size
:param int min_batch_size: mininum batch size (for multi-gpu)
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input
(for ASR ikey="input", for TTS, MT ikey="output".)
:param int iaxis: dimension to access input
(for ASR, TTS iaxis=0, for MT iaxis="1".)
:param str okey: key to access output
(for ASR, MT okey="output". for TTS okey="input".)
:param int oaxis: dimension to access output
(for ASR, TTS, MT oaxis=0, reserved for future research, -1 means all axis.)
:return: List[List[Tuple[str, dict]]] list of batches
"""
if batch_size <= 0:
raise ValueError(f"Invalid batch_size={batch_size}")
# check #utts is more than min_batch_size
if len(sorted_data) < min_batch_size:
raise ValueError(
f"#utts({len(sorted_data)}) is less than min_batch_size({min_batch_size})."
)
# make list of minibatches
minibatches = []
start = 0
while True:
_, info = sorted_data[start]
ilen = int(info[ikey][iaxis]["shape"][0])
olen = (int(info[okey][oaxis]["shape"][0]) if oaxis >= 0 else
max(map(lambda x: int(x["shape"][0]), info[okey])))
factor = max(int(ilen / max_length_in), int(olen / max_length_out))
# change batchsize depending on the input and output length
# if ilen = 1000 and max_length_in = 800
# then b = batchsize / 2
# and max(min_batches, .) avoids batchsize = 0
bs = max(min_batch_size, int(batch_size / (1 + factor)))
end = min(len(sorted_data), start + bs)
minibatch = sorted_data[start:end]
if shortest_first:
minibatch.reverse()
# check each batch is more than minimum batchsize
if len(minibatch) < min_batch_size:
mod = min_batch_size - len(minibatch) % min_batch_size
additional_minibatch = [
sorted_data[i] for i in np.random.randint(0, start, mod)
]
if shortest_first:
additional_minibatch.reverse()
minibatch.extend(additional_minibatch)
minibatches.append(minibatch)
if end == len(sorted_data):
break
start = end
# batch: List[List[Tuple[str, dict]]]
return minibatches
def batchfy_by_bin(
sorted_data,
batch_bins,
num_batches=0,
min_batch_size=1,
shortest_first=False,
ikey="input",
okey="output", ):
"""Make variably sized batch set, which maximizes
the number of bins up to `batch_bins`.
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
:param int batch_bins: Maximum frames of a batch
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param int test: Return only every `test` batches
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
"""
if batch_bins <= 0:
raise ValueError(f"invalid batch_bins={batch_bins}")
length = len(sorted_data)
idim = int(sorted_data[0][1][ikey][0]["shape"][1])
odim = int(sorted_data[0][1][okey][0]["shape"][1])
logger.info("# utts: " + str(len(sorted_data)))
minibatches = []
start = 0
n = 0
while True:
# Dynamic batch size depending on size of samples
b = 0
next_size = 0
max_olen = 0
while next_size < batch_bins and (start + b) < length:
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0]) * idim
olen = int(sorted_data[start + b][1][okey][0]["shape"][0]) * odim
if olen > max_olen:
max_olen = olen
next_size = (max_olen + ilen) * (b + 1)
if next_size <= batch_bins:
b += 1
elif next_size == 0:
raise ValueError(
f"Can't fit one sample in batch_bins ({batch_bins}): "
f"Please increase the value")
end = min(length, start + max(min_batch_size, b))
batch = sorted_data[start:end]
if shortest_first:
batch.reverse()
minibatches.append(batch)
# Check for min_batch_size and fixes the batches if needed
i = -1
while len(minibatches[i]) < min_batch_size:
missing = min_batch_size - len(minibatches[i])
if -i == len(minibatches):
minibatches[i + 1].extend(minibatches[i])
minibatches = minibatches[1:]
break
else:
minibatches[i].extend(minibatches[i - 1][:missing])
minibatches[i - 1] = minibatches[i - 1][missing:]
i -= 1
if end == length:
break
start = end
n += 1
if num_batches > 0:
minibatches = minibatches[:num_batches]
lengths = [len(x) for x in minibatches]
logger.info(
str(len(minibatches)) + " batches containing from " + str(min(lengths))
+ " to " + str(max(lengths)) + " samples " + "(avg " + str(
int(np.mean(lengths))) + " samples).")
return minibatches
def batchfy_by_frame(
sorted_data,
max_frames_in,
max_frames_out,
max_frames_inout,
num_batches=0,
min_batch_size=1,
shortest_first=False,
ikey="input",
okey="output", ):
"""Make variable batch set, which maximizes the number of frames to max_batch_frame.
:param List[(str, Dict[str, Any])] sorteddata: dictionary loaded from data.json
:param int max_frames_in: Maximum input frames of a batch
:param int max_frames_out: Maximum output frames of a batch
:param int max_frames_inout: Maximum input+output frames of a batch
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param int test: Return only every `test` batches
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
"""
if max_frames_in <= 0 and max_frames_out <= 0 and max_frames_inout <= 0:
raise ValueError(
"At least, one of `--batch-frames-in`, `--batch-frames-out` or "
"`--batch-frames-inout` should be > 0")
length = len(sorted_data)
minibatches = []
start = 0
end = 0
while end != length:
# Dynamic batch size depending on size of samples
b = 0
max_olen = 0
max_ilen = 0
while (start + b) < length:
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0])
if ilen > max_frames_in and max_frames_in != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-in ({max_frames_in}): "
f"Please increase the value")
olen = int(sorted_data[start + b][1][okey][0]["shape"][0])
if olen > max_frames_out and max_frames_out != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-out ({max_frames_out}): "
f"Please increase the value")
if ilen + olen > max_frames_inout and max_frames_inout != 0:
raise ValueError(
f"Can't fit one sample in --batch-frames-out ({max_frames_inout}): "
f"Please increase the value")
max_olen = max(max_olen, olen)
max_ilen = max(max_ilen, ilen)
in_ok = max_ilen * (b + 1) <= max_frames_in or max_frames_in == 0
out_ok = max_olen * (b + 1) <= max_frames_out or max_frames_out == 0
inout_ok = (max_ilen + max_olen) * (
b + 1) <= max_frames_inout or max_frames_inout == 0
if in_ok and out_ok and inout_ok:
# add more seq in the minibatch
b += 1
else:
# no more seq in the minibatch
break
end = min(length, start + b)
batch = sorted_data[start:end]
if shortest_first:
batch.reverse()
minibatches.append(batch)
# Check for min_batch_size and fixes the batches if needed
i = -1
while len(minibatches[i]) < min_batch_size:
missing = min_batch_size - len(minibatches[i])
if -i == len(minibatches):
minibatches[i + 1].extend(minibatches[i])
minibatches = minibatches[1:]
break
else:
minibatches[i].extend(minibatches[i - 1][:missing])
minibatches[i - 1] = minibatches[i - 1][missing:]
i -= 1
start = end
if num_batches > 0:
minibatches = minibatches[:num_batches]
lengths = [len(x) for x in minibatches]
logger.info(
str(len(minibatches)) + " batches containing from " + str(min(lengths))
+ " to " + str(max(lengths)) + " samples" + "(avg " + str(
int(np.mean(lengths))) + " samples).")
return minibatches
def batchfy_shuffle(data, batch_size, min_batch_size, num_batches,
shortest_first):
import random
logger.info("use shuffled batch.")
sorted_data = random.sample(data.items(), len(data.items()))
logger.info("# utts: " + str(len(sorted_data)))
# make list of minibatches
minibatches = []
start = 0
while True:
end = min(len(sorted_data), start + batch_size)
# check each batch is more than minimum batchsize
minibatch = sorted_data[start:end]
if shortest_first:
minibatch.reverse()
if len(minibatch) < min_batch_size:
mod = min_batch_size - len(minibatch) % min_batch_size
additional_minibatch = [
sorted_data[i] for i in np.random.randint(0, start, mod)
]
if shortest_first:
additional_minibatch.reverse()
minibatch.extend(additional_minibatch)
minibatches.append(minibatch)
if end == len(sorted_data):
break
start = end
# for debugging
if num_batches > 0:
minibatches = minibatches[:num_batches]
logger.info("# minibatches: " + str(len(minibatches)))
return minibatches
BATCH_COUNT_CHOICES = ["auto", "seq", "bin", "frame"]
BATCH_SORT_KEY_CHOICES = ["input", "output", "shuffle"]
def make_batchset(
data,
batch_size=0,
max_length_in=float("inf"),
max_length_out=float("inf"),
num_batches=0,
min_batch_size=1,
shortest_first=False,
batch_sort_key="input",
count="auto",
batch_bins=0,
batch_frames_in=0,
batch_frames_out=0,
batch_frames_inout=0,
iaxis=0,
oaxis=0, ):
"""Make batch set from json dictionary
if utts have "category" value,
>>> data = {'utt1': {'category': 'A', 'input': ...},
... 'utt2': {'category': 'B', 'input': ...},
... 'utt3': {'category': 'B', 'input': ...},
... 'utt4': {'category': 'A', 'input': ...}}
>>> make_batchset(data, batchsize=2, ...)
[[('utt1', ...), ('utt4', ...)], [('utt2', ...), ('utt3': ...)]]
Note that if any utts doesn't have "category",
perform as same as batchfy_by_{count}
:param Dict[str, Dict[str, Any]] data: dictionary loaded from data.json
:param int batch_size: maximum number of sequences in a minibatch.
:param int batch_bins: maximum number of bins (frames x dim) in a minibatch.
:param int batch_frames_in: maximum number of input frames in a minibatch.
:param int batch_frames_out: maximum number of output frames in a minibatch.
:param int batch_frames_out: maximum number of input+output frames in a minibatch.
:param str count: strategy to count maximum size of batch.
For choices, see espnet.asr.batchfy.BATCH_COUNT_CHOICES
:param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size
:param int num_batches: # number of batches to use (for debug)
:param int min_batch_size: minimum batch size (for multi-gpu)
:param bool shortest_first: Sort from batch with shortest samples
to longest if true, otherwise reverse
:param str batch_sort_key: how to sort data before creating minibatches
["input", "output", "shuffle"]
:param bool swap_io: if True, use "input" as output and "output"
as input in `data` dict
:param bool mt: if True, use 0-axis of "output" as output and 1-axis of "output"
as input in `data` dict
:param int iaxis: dimension to access input
(for ASR, TTS iaxis=0, for MT iaxis="1".)
:param int oaxis: dimension to access output (for ASR, TTS, MT oaxis=0,
reserved for future research, -1 means all axis.)
:return: List[List[Tuple[str, dict]]] list of batches
"""
# check args
if count not in BATCH_COUNT_CHOICES:
raise ValueError(
f"arg 'count' ({count}) should be one of {BATCH_COUNT_CHOICES}")
if batch_sort_key not in BATCH_SORT_KEY_CHOICES:
raise ValueError(f"arg 'batch_sort_key' ({batch_sort_key}) should be "
f"one of {BATCH_SORT_KEY_CHOICES}")
ikey = "input"
okey = "output"
batch_sort_axis = 0 # index of list
if count == "auto":
if batch_size != 0:
count = "seq"
elif batch_bins != 0:
count = "bin"
elif batch_frames_in != 0 or batch_frames_out != 0 or batch_frames_inout != 0:
count = "frame"
else:
raise ValueError(
f"cannot detect `count` manually set one of {BATCH_COUNT_CHOICES}"
)
logger.info(f"count is auto detected as {count}")
if count != "seq" and batch_sort_key == "shuffle":
raise ValueError(
"batch_sort_key=shuffle is only available if batch_count=seq")
category2data = {} # Dict[str, dict]
for k, v in data.items():
category2data.setdefault(v.get("category"), {})[k] = v
batches_list = [] # List[List[List[Tuple[str, dict]]]]
for d in category2data.values():
if batch_sort_key == "shuffle":
batches = batchfy_shuffle(d, batch_size, min_batch_size,
num_batches, shortest_first)
batches_list.append(batches)
continue
# sort it by input lengths (long to short)
sorted_data = sorted(
d.items(),
key=lambda data: int(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
reverse=not shortest_first, )
logger.info("# utts: " + str(len(sorted_data)))
if count == "seq":
batches = batchfy_by_seq(
sorted_data,
batch_size=batch_size,
max_length_in=max_length_in,
max_length_out=max_length_out,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
iaxis=iaxis,
okey=okey,
oaxis=oaxis, )
if count == "bin":
batches = batchfy_by_bin(
sorted_data,
batch_bins=batch_bins,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
okey=okey, )
if count == "frame":
batches = batchfy_by_frame(
sorted_data,
max_frames_in=batch_frames_in,
max_frames_out=batch_frames_out,
max_frames_inout=batch_frames_inout,
min_batch_size=min_batch_size,
shortest_first=shortest_first,
ikey=ikey,
okey=okey, )
batches_list.append(batches)
if len(batches_list) == 1:
batches = batches_list[0]
else:
# Concat list. This way is faster than "sum(batch_list, [])"
batches = list(itertools.chain(*batches_list))
# for debugging
if num_batches > 0:
batches = batches[:num_batches]
logger.info("# minibatches: " + str(len(batches)))
# batch: List[List[Tuple[str, dict]]]
return batches
#!/usr/bin/env python
import argparse
import json
def main(args):
with open(args.json_file, 'r') as fin:
data_json = json.load(fin)
# manifest format:
# {"input": [
# {"feat": "dev/deltafalse/feats.1.ark:842920", "name": "input1", "shape": [349, 83]}
# ],
# "output": [
# {"name": "target1", "shape": [12, 5002], "text": "NO APOLLO", "token": "▁NO ▁A PO LL O", "tokenid": "3144 482 352 269 317"}
# ],
# "utt2spk": "116-288045",
# "utt": "116-288045-0019"}
with open(args.manifest_file, 'w') as fout:
for key, value in data_json['utts'].items():
value['utt'] = key
fout.write(json.dumps(value, ensure_ascii=False))
fout.write("\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--json-file', type=str, default=None, help="espnet data json file.")
parser.add_argument(
'--manifest-file',
type=str,
default='maniefst.train',
help='manifest data json line file.')
args = parser.parse_args()
main(args)
......@@ -5,7 +5,7 @@ source path.sh
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
avg_num=30
avg_num=5
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册