提交 745df04f 编写于 作者: H huangyuxin

complete the pipline of tiny

上级 6baf9f06
......@@ -30,11 +30,13 @@ def main(config, args):
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--model_type")
args = parser.parse_args()
print_arguments(args)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.opts:
......
......@@ -30,11 +30,12 @@ def main(config, args):
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--model_type")
args = parser.parse_args()
print_arguments(args, globals())
# https://yaml.org/type/float.html
config = get_cfg_defaults()
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.opts:
......
......@@ -35,11 +35,12 @@ def main(config, args):
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--model_type")
args = parser.parse_args()
print_arguments(args, globals())
# https://yaml.org/type/float.html
config = get_cfg_defaults()
config = get_cfg_defaults(args.model_type)
if args.config:
config.merge_from_file(args.config)
if args.opts:
......
......@@ -18,21 +18,31 @@ from deepspeech.exps.deepspeech2.model import DeepSpeech2Trainer
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.models.ds2 import DeepSpeech2Model
from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
_C = CfgNode()
_C.data = ManifestDataset.params()
def get_cfg_defaults(model_type):
_C = CfgNode()
if (model_type == 'offline'):
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
_C.collator = SpeechCollator.params()
_C.model = DeepSpeech2Model.params()
_C.model = DeepSpeech2Model.params()
_C.training = DeepSpeech2Trainer.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
_C.decoding = DeepSpeech2Tester.params()
else:
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
def get_cfg_defaults():
_C.model = DeepSpeech2ModelOnline.params()
_C.training = DeepSpeech2Trainer.params()
_C.decoding = DeepSpeech2Tester.params()
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
......
......@@ -122,7 +122,7 @@ class DeepSpeech2Trainer(Trainer):
def setup_model(self):
config = self.config
if config.model.apply_online == True:
if self.args.model_type == 'offline':
model = DeepSpeech2Model(
feat_size=self.train_loader.collate_fn.feature_size,
dict_size=self.train_loader.collate_fn.vocab_size,
......@@ -131,7 +131,7 @@ class DeepSpeech2Trainer(Trainer):
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
else:
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline(
feat_size=self.train_loader.collate_fn.feature_size,
dict_size=self.train_loader.collate_fn.vocab_size,
......@@ -142,6 +142,8 @@ class DeepSpeech2Trainer(Trainer):
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
else:
raise Exception("wrong model type")
if self.parallel:
model = paddle.DataParallel(model)
......@@ -343,12 +345,14 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
exit(-1)
def export(self):
if self.config.model.apply_online == True:
if self.args.model_type == 'offline':
infer_model = DeepSpeech2InferModel.from_pretrained(
self.test_loader, self.config, self.args.checkpoint_path)
elif self.args.model_type == 'online':
infer_model = DeepSpeech2InferModelOnline.from_pretrained(
self.test_loader, self.config, self.args.checkpoint_path)
else:
infer_model = DeepSpeech2InferModel.from_pretrained(
self.test_loader, self.config, self.args.checkpoint_path)
raise Exception("wrong model tyep")
infer_model.eval()
feat_dim = self.test_loader.collate_fn.feature_size
......@@ -386,7 +390,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def setup_model(self):
config = self.config
if config.model.apply_online == True:
if self.args.model_type == 'offline':
model = DeepSpeech2Model(
feat_size=self.test_loader.collate_fn.feature_size,
dict_size=self.test_loader.collate_fn.vocab_size,
......@@ -395,10 +399,10 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
else:
elif self.args.model_type == 'online':
model = DeepSpeech2ModelOnline(
feat_size=self.train_loader.collate_fn.feature_size,
dict_size=self.train_loader.collate_fn.vocab_size,
feat_size=self.test_loader.collate_fn.feature_size,
dict_size=self.test_loader.collate_fn.vocab_size,
num_conv_layers=config.model.num_conv_layers,
num_rnn_layers=config.model.num_rnn_layers,
num_fc_layers=config.model.num_fc_layers,
......@@ -406,6 +410,8 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
rnn_size=config.model.rnn_layer_size,
use_gru=config.model.use_gru,
share_rnn_weights=config.model.share_rnn_weights)
else:
raise Exception("Wrong model type")
self.model = model
logger.info("Setup model!")
......
#!/bin/bash
if [ $# != 3 ];then
if [ $# != 4 ];then
echo "usage: $0 config_path ckpt_prefix jit_model_path"
exit -1
fi
......@@ -11,6 +11,7 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
device=gpu
if [ ${ngpu} == 0 ];then
......@@ -22,8 +23,8 @@ python3 -u ${BIN_DIR}/export.py \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
--export_path ${jit_model_export_path}
--export_path ${jit_model_export_path} \
--model_type ${model_type}
if [ $? -ne 0 ]; then
echo "Failed in export!"
......
#!/bin/bash
if [ $# != 2 ];then
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
exit -1
fi
......@@ -14,6 +14,7 @@ if [ ${ngpu} == 0 ];then
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
# download language model
bash local/download_lm_en.sh
......@@ -26,7 +27,8 @@ python3 -u ${BIN_DIR}/test.py \
--nproc 1 \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix}
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
......
#!/bin/bash
if [ $# != 2 ];then
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
exit -1
fi
......@@ -10,6 +10,7 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
model_type=$3
device=gpu
if [ ${ngpu} == 0 ];then
......@@ -22,7 +23,8 @@ python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name}
--output exp/${ckpt_name} \
--model_type ${model_type}
if [ $? -ne 0 ]; then
echo "Failed in training!"
......
......@@ -7,6 +7,7 @@ stage=0
stop_stage=100
conf_path=conf/deepspeech2.yaml
avg_num=1
model_type=online
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
......@@ -21,7 +22,7 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
......@@ -31,10 +32,10 @@ fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
fi
#!/bin/bash
set -e
source path.sh
gpus=7
stage=1
stop_stage=100
conf_path=conf/deepspeech2.yaml
avg_num=1
model_type=online
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}') ###ckpt = deepspeech2
echo "checkpoint name ${ckpt}"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${model_type}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
avg.sh exp/${ckpt}/checkpoints ${avg_num}
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/test.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES=${gpus} ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
fi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册