Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
7181e427
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7181e427
编写于
8月 29, 2021
作者:
H
Hui Zhang
提交者:
GitHub
8月 29, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #786 from Jackwaterveg/ds2_online
[Static model test] Add the test process for export model
上级
5890c84c
2451a177
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
370 addition
and
20 deletion
+370
-20
deepspeech/exps/deepspeech2/bin/test_export.py
deepspeech/exps/deepspeech2/bin/test_export.py
+58
-0
deepspeech/exps/deepspeech2/model.py
deepspeech/exps/deepspeech2/model.py
+265
-17
deepspeech/models/ds2/deepspeech2.py
deepspeech/models/ds2/deepspeech2.py
+1
-1
deepspeech/models/ds2_online/deepspeech2.py
deepspeech/models/ds2_online/deepspeech2.py
+2
-2
examples/aishell/s0/local/test_export.sh
examples/aishell/s0/local/test_export.sh
+39
-0
examples/aishell/s0/run.sh
examples/aishell/s0/run.sh
+5
-0
未找到文件。
deepspeech/exps/deepspeech2/bin/test_export.py
0 → 100644
浏览文件 @
7181e427
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for DeepSpeech2 model."""
from
deepspeech.exps.deepspeech2.config
import
get_cfg_defaults
from
deepspeech.exps.deepspeech2.model
import
DeepSpeech2ExportTester
as
ExportTester
from
deepspeech.training.cli
import
default_argument_parser
from
deepspeech.utils.utility
import
print_arguments
def
main_sp
(
config
,
args
):
exp
=
ExportTester
(
config
,
args
)
exp
.
setup
()
exp
.
run_test
()
def
main
(
config
,
args
):
main_sp
(
config
,
args
)
if
__name__
==
"__main__"
:
parser
=
default_argument_parser
()
# save asr result to
parser
.
add_argument
(
"--result_file"
,
type
=
str
,
help
=
"path of save the asr result"
)
#load jit model from
parser
.
add_argument
(
"--export_path"
,
type
=
str
,
help
=
"path of the jit model to save"
)
parser
.
add_argument
(
"--model_type"
)
args
=
parser
.
parse_args
()
print_arguments
(
args
,
globals
())
if
args
.
model_type
is
None
:
args
.
model_type
=
'offline'
print
(
"model_type:{}"
.
format
(
args
.
model_type
))
# https://yaml.org/type/float.html
config
=
get_cfg_defaults
(
args
.
model_type
)
if
args
.
config
:
config
.
merge_from_file
(
args
.
config
)
if
args
.
opts
:
config
.
merge_from_list
(
args
.
opts
)
config
.
freeze
()
print
(
config
)
if
args
.
dump_config
:
with
open
(
args
.
dump_config
,
'w'
)
as
f
:
print
(
config
,
file
=
f
)
main
(
config
,
args
)
deepspeech/exps/deepspeech2/model.py
浏览文件 @
7181e427
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""Contains DeepSpeech2 and DeepSpeech2Online model."""
"""Contains DeepSpeech2 and DeepSpeech2Online model."""
import
os
import
time
import
time
from
collections
import
defaultdict
from
collections
import
defaultdict
from
pathlib
import
Path
from
pathlib
import
Path
...
@@ -20,6 +21,7 @@ from typing import Optional
...
@@ -20,6 +21,7 @@ from typing import Optional
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
from
paddle
import
distributed
as
dist
from
paddle
import
distributed
as
dist
from
paddle
import
inference
from
paddle.io
import
DataLoader
from
paddle.io
import
DataLoader
from
yacs.config
import
CfgNode
from
yacs.config
import
CfgNode
...
@@ -268,24 +270,9 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
...
@@ -268,24 +270,9 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
vocab_list
=
self
.
test_loader
.
collate_fn
.
vocab_list
vocab_list
=
self
.
test_loader
.
collate_fn
.
vocab_list
target_transcripts
=
self
.
ordid2token
(
texts
,
texts_len
)
target_transcripts
=
self
.
ordid2token
(
texts
,
texts_len
)
self
.
autolog
.
times
.
start
()
self
.
autolog
.
times
.
stamp
()
result_transcripts
=
self
.
model
.
decode
(
audio
,
audio_len
,
vocab_list
,
decoding_method
=
cfg
.
decoding_method
,
lang_model_path
=
cfg
.
lang_model_path
,
beam_alpha
=
cfg
.
alpha
,
beam_beta
=
cfg
.
beta
,
beam_size
=
cfg
.
beam_size
,
cutoff_prob
=
cfg
.
cutoff_prob
,
cutoff_top_n
=
cfg
.
cutoff_top_n
,
num_processes
=
cfg
.
num_proc_bsearch
)
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
end
()
result_transcripts
=
self
.
compute_result_transcripts
(
audio
,
audio_len
,
vocab_list
,
cfg
)
for
utt
,
target
,
result
in
zip
(
utts
,
target_transcripts
,
for
utt
,
target
,
result
in
zip
(
utts
,
target_transcripts
,
result_transcripts
):
result_transcripts
):
errors
,
len_ref
=
errors_func
(
target
,
result
)
errors
,
len_ref
=
errors_func
(
target
,
result
)
...
@@ -306,6 +293,26 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
...
@@ -306,6 +293,26 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
error_rate
=
errors_sum
/
len_refs
,
error_rate
=
errors_sum
/
len_refs
,
error_rate_type
=
cfg
.
error_rate_type
)
error_rate_type
=
cfg
.
error_rate_type
)
def
compute_result_transcripts
(
self
,
audio
,
audio_len
,
vocab_list
,
cfg
):
self
.
autolog
.
times
.
start
()
self
.
autolog
.
times
.
stamp
()
result_transcripts
=
self
.
model
.
decode
(
audio
,
audio_len
,
vocab_list
,
decoding_method
=
cfg
.
decoding_method
,
lang_model_path
=
cfg
.
lang_model_path
,
beam_alpha
=
cfg
.
alpha
,
beam_beta
=
cfg
.
beta
,
beam_size
=
cfg
.
beam_size
,
cutoff_prob
=
cfg
.
cutoff_prob
,
cutoff_top_n
=
cfg
.
cutoff_top_n
,
num_processes
=
cfg
.
num_proc_bsearch
)
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
end
()
return
result_transcripts
@
mp_tools
.
rank_zero_only
@
mp_tools
.
rank_zero_only
@
paddle
.
no_grad
()
@
paddle
.
no_grad
()
def
test
(
self
):
def
test
(
self
):
...
@@ -395,3 +402,244 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
...
@@ -395,3 +402,244 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
self
.
output_dir
=
output_dir
self
.
output_dir
=
output_dir
class
DeepSpeech2ExportTester
(
DeepSpeech2Tester
):
def
__init__
(
self
,
config
,
args
):
super
().
__init__
(
config
,
args
)
def
compute_result_transcripts
(
self
,
audio
,
audio_len
,
vocab_list
,
cfg
):
if
self
.
args
.
model_type
==
"online"
:
output_probs
,
output_lens
=
self
.
static_forward_online
(
audio
,
audio_len
)
elif
self
.
args
.
model_type
==
"offline"
:
output_probs
,
output_lens
=
self
.
static_forward_offline
(
audio
,
audio_len
)
else
:
raise
Exception
(
"wrong model type"
)
self
.
predictor
.
clear_intermediate_tensor
()
self
.
predictor
.
try_shrink_memory
()
self
.
model
.
decoder
.
init_decode
(
cfg
.
alpha
,
cfg
.
beta
,
cfg
.
lang_model_path
,
vocab_list
,
cfg
.
decoding_method
)
result_transcripts
=
self
.
model
.
decoder
.
decode_probs
(
output_probs
,
output_lens
,
vocab_list
,
cfg
.
decoding_method
,
cfg
.
lang_model_path
,
cfg
.
alpha
,
cfg
.
beta
,
cfg
.
beam_size
,
cfg
.
cutoff_prob
,
cfg
.
cutoff_top_n
,
cfg
.
num_proc_bsearch
)
return
result_transcripts
def
static_forward_online
(
self
,
audio
,
audio_len
,
decoder_chunk_size
:
int
=
1
):
"""
Parameters
----------
audio (Tensor): shape[B, T, D]
audio_len (Tensor): shape[B]
decoder_chunk_size(int)
Returns
-------
output_probs(numpy.array): shape[B, T, vocab_size]
output_lens(numpy.array): shape[B]
"""
output_probs_list
=
[]
output_lens_list
=
[]
subsampling_rate
=
self
.
model
.
encoder
.
conv
.
subsampling_rate
receptive_field_length
=
self
.
model
.
encoder
.
conv
.
receptive_field_length
chunk_stride
=
subsampling_rate
*
decoder_chunk_size
chunk_size
=
(
decoder_chunk_size
-
1
)
*
subsampling_rate
+
receptive_field_length
x_batch
=
audio
.
numpy
()
batch_size
,
Tmax
,
x_dim
=
x_batch
.
shape
x_len_batch
=
audio_len
.
numpy
().
astype
(
np
.
int64
)
if
(
Tmax
-
chunk_size
)
%
chunk_stride
!=
0
:
padding_len_batch
=
chunk_stride
-
(
Tmax
-
chunk_size
)
%
chunk_stride
# The length of padding for the batch
else
:
padding_len_batch
=
0
x_list
=
np
.
split
(
x_batch
,
batch_size
,
axis
=
0
)
x_len_list
=
np
.
split
(
x_len_batch
,
batch_size
,
axis
=
0
)
for
x
,
x_len
in
zip
(
x_list
,
x_len_list
):
self
.
autolog
.
times
.
start
()
self
.
autolog
.
times
.
stamp
()
x_len
=
x_len
[
0
]
assert
(
chunk_size
<=
x_len
)
if
(
x_len
-
chunk_size
)
%
chunk_stride
!=
0
:
padding_len_x
=
chunk_stride
-
(
x_len
-
chunk_size
)
%
chunk_stride
else
:
padding_len_x
=
0
padding
=
np
.
zeros
(
(
x
.
shape
[
0
],
padding_len_x
,
x
.
shape
[
2
]),
dtype
=
x
.
dtype
)
padded_x
=
np
.
concatenate
([
x
,
padding
],
axis
=
1
)
num_chunk
=
(
x_len
+
padding_len_x
-
chunk_size
)
/
chunk_stride
+
1
num_chunk
=
int
(
num_chunk
)
chunk_state_h_box
=
np
.
zeros
(
(
self
.
config
.
model
.
num_rnn_layers
,
1
,
self
.
config
.
model
.
rnn_layer_size
),
dtype
=
x
.
dtype
)
chunk_state_c_box
=
np
.
zeros
(
(
self
.
config
.
model
.
num_rnn_layers
,
1
,
self
.
config
.
model
.
rnn_layer_size
),
dtype
=
x
.
dtype
)
input_names
=
self
.
predictor
.
get_input_names
()
audio_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
0
])
audio_len_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
1
])
h_box_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
2
])
c_box_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
3
])
probs_chunk_list
=
[]
probs_chunk_lens_list
=
[]
for
i
in
range
(
0
,
num_chunk
):
start
=
i
*
chunk_stride
end
=
start
+
chunk_size
x_chunk
=
padded_x
[:,
start
:
end
,
:]
if
x_len
<
i
*
chunk_stride
:
x_chunk_lens
=
0
else
:
x_chunk_lens
=
min
(
x_len
-
i
*
chunk_stride
,
chunk_size
)
if
(
x_chunk_lens
<
receptive_field_length
):
#means the number of input frames in the chunk is not enough for predicting one prob
break
x_chunk_lens
=
np
.
array
([
x_chunk_lens
])
audio_handle
.
reshape
(
x_chunk
.
shape
)
audio_handle
.
copy_from_cpu
(
x_chunk
)
audio_len_handle
.
reshape
(
x_chunk_lens
.
shape
)
audio_len_handle
.
copy_from_cpu
(
x_chunk_lens
)
h_box_handle
.
reshape
(
chunk_state_h_box
.
shape
)
h_box_handle
.
copy_from_cpu
(
chunk_state_h_box
)
c_box_handle
.
reshape
(
chunk_state_c_box
.
shape
)
c_box_handle
.
copy_from_cpu
(
chunk_state_c_box
)
output_names
=
self
.
predictor
.
get_output_names
()
output_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
output_lens_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
output_state_h_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
output_state_c_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
self
.
predictor
.
run
()
output_chunk_probs
=
output_handle
.
copy_to_cpu
()
output_chunk_lens
=
output_lens_handle
.
copy_to_cpu
()
chunk_state_h_box
=
output_state_h_handle
.
copy_to_cpu
()
chunk_state_c_box
=
output_state_c_handle
.
copy_to_cpu
()
probs_chunk_list
.
append
(
output_chunk_probs
)
probs_chunk_lens_list
.
append
(
output_chunk_lens
)
output_probs
=
np
.
concatenate
(
probs_chunk_list
,
axis
=
1
)
output_lens
=
np
.
sum
(
probs_chunk_lens_list
,
axis
=
0
)
vocab_size
=
output_probs
.
shape
[
2
]
output_probs_padding_len
=
Tmax
+
padding_len_batch
-
output_probs
.
shape
[
1
]
output_probs_padding
=
np
.
zeros
(
(
1
,
output_probs_padding_len
,
vocab_size
),
dtype
=
output_probs
.
dtype
)
# The prob padding for a piece of utterance
output_probs
=
np
.
concatenate
(
[
output_probs
,
output_probs_padding
],
axis
=
1
)
output_probs_list
.
append
(
output_probs
)
output_lens_list
.
append
(
output_lens
)
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
end
()
output_probs
=
np
.
concatenate
(
output_probs_list
,
axis
=
0
)
output_lens
=
np
.
concatenate
(
output_lens_list
,
axis
=
0
)
return
output_probs
,
output_lens
def
static_forward_offline
(
self
,
audio
,
audio_len
):
"""
Parameters
----------
audio (Tensor): shape[B, T, D]
audio_len (Tensor): shape[B]
Returns
-------
output_probs(numpy.array): shape[B, T, vocab_size]
output_lens(numpy.array): shape[B]
"""
x
=
audio
.
numpy
()
x_len
=
audio_len
.
numpy
().
astype
(
np
.
int64
)
input_names
=
self
.
predictor
.
get_input_names
()
audio_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
0
])
audio_len_handle
=
self
.
predictor
.
get_input_handle
(
input_names
[
1
])
audio_handle
.
reshape
(
x
.
shape
)
audio_handle
.
copy_from_cpu
(
x
)
audio_len_handle
.
reshape
(
x_len
.
shape
)
audio_len_handle
.
copy_from_cpu
(
x_len
)
self
.
autolog
.
times
.
start
()
self
.
autolog
.
times
.
stamp
()
self
.
predictor
.
run
()
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
stamp
()
self
.
autolog
.
times
.
end
()
output_names
=
self
.
predictor
.
get_output_names
()
output_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
output_lens_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
1
])
output_probs
=
output_handle
.
copy_to_cpu
()
output_lens
=
output_lens_handle
.
copy_to_cpu
()
return
output_probs
,
output_lens
def
run_test
(
self
):
try
:
self
.
test
()
except
KeyboardInterrupt
:
exit
(
-
1
)
def
setup
(
self
):
"""Setup the experiment.
"""
paddle
.
set_device
(
self
.
args
.
device
)
self
.
setup_output_dir
()
self
.
setup_dataloader
()
self
.
setup_model
()
self
.
iteration
=
0
self
.
epoch
=
0
def
setup_output_dir
(
self
):
"""Create a directory used for output.
"""
# output dir
if
self
.
args
.
output
:
output_dir
=
Path
(
self
.
args
.
output
).
expanduser
()
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
else
:
output_dir
=
Path
(
self
.
args
.
export_path
).
expanduser
().
parent
.
parent
output_dir
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
self
.
output_dir
=
output_dir
def
setup_model
(
self
):
super
().
setup_model
()
speedyspeech_config
=
inference
.
Config
(
self
.
args
.
export_path
+
".pdmodel"
,
self
.
args
.
export_path
+
".pdiparams"
)
if
(
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
].
strip
()
!=
''
):
speedyspeech_config
.
enable_use_gpu
(
100
,
0
)
speedyspeech_config
.
enable_memory_optim
()
speedyspeech_predictor
=
inference
.
create_predictor
(
speedyspeech_config
)
self
.
predictor
=
speedyspeech_predictor
deepspeech/models/ds2/deepspeech2.py
浏览文件 @
7181e427
...
@@ -280,7 +280,7 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
...
@@ -280,7 +280,7 @@ class DeepSpeech2InferModel(DeepSpeech2Model):
"""
"""
eouts
,
eouts_len
=
self
.
encoder
(
audio
,
audio_len
)
eouts
,
eouts_len
=
self
.
encoder
(
audio
,
audio_len
)
probs
=
self
.
decoder
.
softmax
(
eouts
)
probs
=
self
.
decoder
.
softmax
(
eouts
)
return
probs
return
probs
,
eouts_len
def
export
(
self
):
def
export
(
self
):
static_model
=
paddle
.
jit
.
to_static
(
static_model
=
paddle
.
jit
.
to_static
(
...
...
deepspeech/models/ds2_online/deepspeech2.py
浏览文件 @
7181e427
...
@@ -100,12 +100,12 @@ class CRNNEncoder(nn.Layer):
...
@@ -100,12 +100,12 @@ class CRNNEncoder(nn.Layer):
"""Compute Encoder outputs
"""Compute Encoder outputs
Args:
Args:
x (Tensor): [B,
feature_size
, D]
x (Tensor): [B,
T
, D]
x_lens (Tensor): [B]
x_lens (Tensor): [B]
init_state_h_box(Tensor): init_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
init_state_h_box(Tensor): init_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
init_state_c_box(Tensor): init_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
init_state_c_box(Tensor): init_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
Return:
Return:
x (Tensor): encoder outputs, [B,
size
, D]
x (Tensor): encoder outputs, [B,
T
, D]
x_lens (Tensor): encoder length, [B]
x_lens (Tensor): encoder length, [B]
final_state_h_box(Tensor): final_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
final_state_h_box(Tensor): final_states h for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
final_state_c_box(Tensor): final_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
final_state_c_box(Tensor): final_states c for RNN layers: [num_rnn_layers * num_directions, batch_size, hidden_size]
...
...
examples/aishell/s0/local/test_export.sh
0 → 100755
浏览文件 @
7181e427
#!/bin/bash
if
[
$#
!=
3
]
;
then
echo
"usage:
${
0
}
config_path ckpt_path_prefix model_type"
exit
-1
fi
ngpu
=
$(
echo
$CUDA_VISIBLE_DEVICES
|
awk
-F
","
'{print NF}'
)
echo
"using
$ngpu
gpus..."
device
=
gpu
if
[
${
ngpu
}
==
0
]
;
then
device
=
cpu
fi
config_path
=
$1
jit_model_export_path
=
$2
model_type
=
$3
# download language model
bash
local
/download_lm_ch.sh
if
[
$?
-ne
0
]
;
then
exit
1
fi
python3
-u
${
BIN_DIR
}
/test_export.py
\
--device
${
device
}
\
--nproc
1
\
--config
${
config_path
}
\
--result_file
${
jit_model_export_path
}
.rsl
\
--export_path
${
jit_model_export_path
}
\
--model_type
${
model_type
}
if
[
$?
-ne
0
]
;
then
echo
"Failed in evaluation!"
exit
1
fi
exit
0
examples/aishell/s0/run.sh
浏览文件 @
7181e427
...
@@ -39,3 +39,8 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
...
@@ -39,3 +39,8 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
# export ckpt avg_n
CUDA_VISIBLE_DEVICES
=
0 ./local/export.sh
${
conf_path
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
.jit
${
model_type
}
CUDA_VISIBLE_DEVICES
=
0 ./local/export.sh
${
conf_path
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
.jit
${
model_type
}
fi
fi
if
[
${
stage
}
-le
5
]
&&
[
${
stop_stage
}
-ge
5
]
;
then
# test export ckpt avg_n
CUDA_VISIBLE_DEVICES
=
0 ./local/test_export.sh
${
conf_path
}
exp/
${
ckpt
}
/checkpoints/
${
avg_ckpt
}
.jit
${
model_type
}
||
exit
-1
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录