未验证 提交 5ed56b3f 编写于 作者: H Hui Zhang 提交者: GitHub

Merge pull request #852 from PaddlePaddle/dataset

refactor ds code
......@@ -18,5 +18,7 @@ tools/sox-14.4.2
tools/soxbindings
tools/montreal-forced-aligner/
tools/Montreal-Forced-Aligner/
tools/sctk
tools/sctk-20159b5/
*output/
......@@ -27,7 +27,7 @@ def main_sp(config, args):
def main(config, args):
if args.device == "gpu" and args.nprocs > 1:
if args.nprocs > 0:
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
......
......@@ -19,6 +19,7 @@ from contextlib import nullcontext
from pathlib import Path
from typing import Optional
import jsonlines
import numpy as np
import paddle
from paddle import distributed as dist
......@@ -305,9 +306,10 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
len_refs += len_ref
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
fout.write({"utt": utt, "ref": target, "hyp": result})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("Current error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
......@@ -350,7 +352,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
cfg = self.config
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
with open(self.args.result_file, 'w') as fout:
with jsonlines.open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
utts, audio, audio_len, texts, texts_len = batch
metrics = self.compute_metrics(utts, audio, audio_len, texts,
......@@ -403,7 +405,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
......@@ -635,7 +637,7 @@ class DeepSpeech2ExportTester(DeepSpeech2Tester):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
......
......@@ -32,7 +32,7 @@ def main_sp(config, args):
def main(config, args):
if args.device == "gpu" and args.nprocs > 1:
if args.nprocs > 0:
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
......
......@@ -22,6 +22,7 @@ from contextlib import nullcontext
from pathlib import Path
from typing import Optional
import jsonlines
import numpy as np
import paddle
from paddle import distributed as dist
......@@ -466,9 +467,10 @@ class U2Tester(U2Trainer):
len_refs += len_ref
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
fout.write({"utt": utt, "ref": target, "hyp": result})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
......@@ -493,7 +495,7 @@ class U2Tester(U2Trainer):
errors_sum, len_refs, num_ins = 0.0, 0, 0
num_frames = 0.0
num_time = 0.0
with open(self.args.result_file, 'w') as fout:
with jsonlines.open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
metrics = self.compute_metrics(*batch, fout=fout)
num_frames += metrics['num_frames']
......@@ -653,7 +655,7 @@ class U2Tester(U2Trainer):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
......
......@@ -36,7 +36,7 @@ def main_sp(config, args):
def main(config, args):
if args.device == "gpu" and args.nprocs > 1:
if args.nprocs > 0:
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
......
......@@ -21,6 +21,7 @@ from contextlib import nullcontext
from pathlib import Path
from typing import Optional
import jsonlines
import numpy as np
import paddle
from paddle import distributed as dist
......@@ -445,9 +446,10 @@ class U2Tester(U2Trainer):
len_refs += len_ref
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
fout.write({"utt": utt, "ref": target, "hyp": result})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example error rate [%s] = %f" %
(cfg.error_rate_type, error_rate_func(target, result)))
......@@ -472,7 +474,7 @@ class U2Tester(U2Trainer):
errors_sum, len_refs, num_ins = 0.0, 0, 0
num_frames = 0.0
num_time = 0.0
with open(self.args.result_file, 'w') as fout:
with jsonlines.open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
metrics = self.compute_metrics(*batch, fout=fout)
num_frames += metrics['num_frames']
......@@ -637,7 +639,7 @@ class U2Tester(U2Trainer):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
......
......@@ -30,7 +30,7 @@ def main_sp(config, args):
def main(config, args):
if args.device == "gpu" and args.nprocs > 1:
if args.nprocs > 0:
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
......
......@@ -21,6 +21,7 @@ from contextlib import nullcontext
from pathlib import Path
from typing import Optional
import jsonlines
import numpy as np
import paddle
from paddle import distributed as dist
......@@ -479,8 +480,10 @@ class U2STTester(U2STTrainer):
len_refs += len(target.split())
num_ins += 1
if fout:
fout.write(utt + " " + result + "\n")
logger.info("\nReference: %s\nHypothesis: %s" % (target, result))
fout.write({"utt": utt, "ref": target, "hyp": result})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example BLEU = %s" %
(bleu_func([result], [[target]]).prec_str))
......@@ -508,7 +511,7 @@ class U2STTester(U2STTrainer):
len_refs, num_ins = 0, 0
num_frames = 0.0
num_time = 0.0
with open(self.args.result_file, 'w') as fout:
with jsonlines.open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
metrics = self.compute_translation_metrics(
*batch, bleu_func=bleu_func, fout=fout)
......@@ -661,7 +664,7 @@ class U2STTester(U2STTrainer):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
......
......@@ -12,13 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains data helper functions."""
import codecs
import json
import math
from typing import List
from typing import Optional
from typing import Text
import jsonlines
import numpy as np
from deepspeech.utils.log import Log
......@@ -92,26 +92,22 @@ def read_manifest(
"""
manifest = []
for json_line in codecs.open(manifest_path, 'r', 'utf-8'):
try:
json_data = json.loads(json_line)
except Exception as e:
raise IOError("Error reading manifest: %s" % str(e))
feat_len = json_data["feat_shape"][
0] if 'feat_shape' in json_data else 1.0
token_len = json_data["token_shape"][
0] if 'token_shape' in json_data else 1.0
conditions = [
feat_len >= min_input_len,
feat_len <= max_input_len,
token_len >= min_output_len,
token_len <= max_output_len,
token_len / feat_len >= min_output_input_ratio,
token_len / feat_len <= max_output_input_ratio,
]
if all(conditions):
manifest.append(json_data)
with jsonlines.open(manifest_path, 'r') as reader:
for json_data in reader:
feat_len = json_data["feat_shape"][
0] if 'feat_shape' in json_data else 1.0
token_len = json_data["token_shape"][
0] if 'token_shape' in json_data else 1.0
conditions = [
feat_len >= min_input_len,
feat_len <= max_input_len,
token_len >= min_output_len,
token_len <= max_output_len,
token_len / feat_len >= min_output_input_ratio,
token_len / feat_len <= max_output_input_ratio,
]
if all(conditions):
manifest.append(json_data)
return manifest
......
......@@ -14,6 +14,20 @@
import argparse
class ExtendAction(argparse.Action):
"""
[Since Python 3.8, the "extend" is available directly in stdlib]
(https://docs.python.org/3.8/library/argparse.html#action).
If you only have to support 3.8+ then defining it yourself is no longer required.
Usage of stdlib "extend" action is exactly the same way as this answer originally described:
"""
def __call__(self, parser, namespace, values, option_string=None):
items = getattr(namespace, self.dest) or []
items.extend(values)
setattr(namespace, self.dest, items)
def default_argument_parser():
r"""A simple yet genral argument parser for experiments with parakeet.
......@@ -30,7 +44,7 @@ def default_argument_parser():
The ``--checkpoint_path`` specifies the checkpoint to load from.
The ``--device`` and ``--nprocs`` specifies how to run the training.
The ``--nprocs`` specifies how to run the training.
See Also
......@@ -42,6 +56,7 @@ def default_argument_parser():
the parser
"""
parser = argparse.ArgumentParser()
parser.register('action', 'extend', ExtendAction)
train_group = parser.add_argument_group(
title='Train Options', description=None)
......@@ -51,12 +66,6 @@ def default_argument_parser():
default=None,
help="seed to use for paddle, np and random. None or 0 for random, else set seed."
)
train_group.add_argument(
"--device",
type=str,
default='gpu',
choices=["cpu", "gpu"],
help="device cpu and gpu are supported.")
train_group.add_argument(
"--nprocs",
type=int,
......@@ -70,10 +79,10 @@ def default_argument_parser():
"--checkpoint_path", type=str, help="path to load checkpoint")
train_group.add_argument(
"--opts",
type=str,
default=[],
nargs='+',
help="overwrite --config file, passing in LIST[KEY VALUE] pairs")
action='extend',
nargs=2,
metavar=('key', 'val'),
help="overwrite --config field, passing (KEY VALUE) pairs")
train_group.add_argument(
"--dump-config", metavar="FILE", help="dump config to `this` file.")
......
......@@ -86,7 +86,7 @@ class Trainer():
>>> config.merge_from_list(args.opts)
>>> config.freeze()
>>>
>>> if args.nprocs > 1 and args.device == "gpu":
>>> if args.nprocs > 0:
>>> dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
>>> else:
>>> main_sp(config, args)
......@@ -119,7 +119,7 @@ class Trainer():
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
if self.parallel:
self.init_parallel()
......@@ -139,7 +139,7 @@ class Trainer():
"""A flag indicating whether the experiment should run with
multiprocessing.
"""
return self.args.device == "gpu" and self.args.nprocs > 1
return self.args.nprocs > 0
def init_parallel(self):
"""Init environment for multiprocess training.
......
......@@ -94,9 +94,19 @@ def pad_sequence(sequences: List[paddle.Tensor],
length = tensor.shape[0]
# use index notation to prevent duplicate references to the tensor
if batch_first:
out_tensor[i, :length, ...] = tensor
# TODO (Hui Zhang): set_value op not supprot `end==start`
# out_tensor[i, :length, ...] = tensor
if length != 0:
out_tensor[i, :length, ...] = tensor
else:
out_tensor[i, length, ...] = tensor
else:
out_tensor[:length, i, ...] = tensor
# TODO (Hui Zhang): set_value op not supprot `end==start`
# out_tensor[:length, i, ...] = tensor
if length != 0:
out_tensor[:length, i, ...] = tensor
else:
out_tensor[length, i, ...] = tensor
return out_tensor
......
# 1xt2x
Convert Deepspeech 1.8 released model to 2.x.
## Model
* Deepspeech2x
## Exp
* baidu_en8k
* aishell
* librispeech
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -401,7 +401,7 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
def setup(self):
"""Setup the experiment.
"""
paddle.set_device(self.args.device)
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
self.setup_output_dir()
self.setup_checkpointer()
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -13,13 +13,7 @@ ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
jit_model_export_path=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test_export.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${jit_model_export_path}.rsl \
--export_path ${jit_model_export_path} \
......
......@@ -12,11 +12,6 @@ config_path=$1
ckpt_name=$2
model_type=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
mkdir -p exp
# seed may break model convergence
......@@ -26,7 +21,6 @@ if [ ${seed} != 0 ]; then
fi
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -22,8 +18,7 @@ mkdir -p ${output_dir}
# align dump in `result_file`
# .tier, .TextGrid dump in `dir of result_file`
python3 -u ${BIN_DIR}/alignment.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,13 +12,7 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,11 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -39,8 +34,7 @@ for type in attention ctc_greedy_search; do
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......@@ -58,8 +52,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,11 +12,6 @@ source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
echo "using seed $seed & FLAGS_cudnn_deterministic=True ..."
......@@ -34,7 +29,6 @@ mkdir -p exp
python3 -u ${BIN_DIR}/train.py \
--seed ${seed} \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -20,7 +16,6 @@ ckpt_name=$(basename ${ckpt_prefxi})
mkdir -p exp
batch_size=1
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
......@@ -28,8 +23,7 @@ mkdir -p ${output_dir}
# align dump in `result_file`
# .tier, .TextGrid dump in `dir of result_file`
python3 -u ${BIN_DIR}/alignment.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,13 +12,7 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -32,8 +28,7 @@ for type in attention ctc_greedy_search; do
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......@@ -51,8 +46,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -11,10 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
......@@ -26,7 +22,6 @@ if [ ${seed} != 0 ]; then
fi
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -13,13 +13,7 @@ ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,12 +12,6 @@ config_path=$1
ckpt_name=$2
model_type=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
# seed may break model convergence
......@@ -27,7 +21,6 @@ if [ ${seed} != 0 ]; then
fi
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~
# Select the backend used by run.sh from "local", "sge", "slurm", or "ssh"
cmd_backend='local'
# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then
# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"
# "qsub" (SGE, Torque, PBS, etc.)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.
export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"
# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partion" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".
export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"
elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.
export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"
# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then
export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/gpu.conf"
export decode_cmd="queue.pl --mem 4G"
else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -22,8 +18,7 @@ mkdir -p ${output_dir}
# align dump in `result_file`
# .tier, .TextGrid dump in `dir of result_file`
python3 -u ${BIN_DIR}/alignment.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,13 +12,7 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
#!/bin/bash
if [ $# != 2 ];then
echo "usage: ${0} config_path ckpt_path_prefix"
set -e
expdir=exp
datadir=data
nj=32
lmtag=
recog_set="test-clean test-other dev-clean dev-other"
recog_set="test-clean"
# bpemode (unigram or bpe)
nbpe=5000
bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
bpemodel=${bpeprefix}.model
if [ $# != 3 ];then
echo "usage: ${0} config_path dict_path ckpt_path_prefix"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
dict=$2
ckpt_prefix=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
......@@ -29,44 +42,46 @@ echo "chunk mode ${chunk_mode}"
# exit 1
#fi
for type in attention ctc_greedy_search; do
echo "decoding ${type}"
if [ ${chunk_mode} == true ];then
# stream decoding only support batchsize=1
pids=() # initialize pids
for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_rescoring; do
(
for rtask in ${recog_set}; do
(
decode_dir=decode_${rtask}_${dmethd}_$(basename ${config_path%.*})_${lmtag}
feat_recog_dir=${datadir}
mkdir -p ${expdir}/${decode_dir}
mkdir -p ${feat_recog_dir}
# split data
split_json.sh ${feat_recog_dir}/manifest.${rtask} ${nj}
#### use CPU for decoding
ngpu=0
# set batchsize 0 to disable batch decoding
batch_size=1
else
batch_size=64
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
python3 -u ${BIN_DIR}/test.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${expdir}/${decode_dir}/data.JOB.json \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${dmethd} \
--opts decoding.batch_size ${batch_size} \
--opts data.test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel}.model --wer true ${expdir}/${decode_dir} ${dict}
for type in ctc_prefix_beam_search attention_rescoring; do
echo "decoding ${type}"
batch_size=1
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
) &
pids+=($!) # store background pids
done
) &
pids+=($!) # store background pids
done
i=0; for pid in "${pids[@]}"; do wait ${pid} || ((++i)); done
[ ${i} -gt 0 ] && echo "$0: ${i} background jobs are failed." && false
echo "Finished"
exit 0
......@@ -11,12 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
# seed may break model convergence
......@@ -25,8 +19,10 @@ if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
# export FLAGS_cudnn_exhaustive_search=true
# export FLAGS_conv_workspace_size_limit=4000
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${PWD}/utils:${PATH}
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/tools/sctk/bin:${PWD}/utils:${PATH}
export LC_ALL=C
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
......
#!/bin/bash
set -e
source path.sh
. ./path.sh || exit 1;
. ./cmd.sh || exit 1;
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
avg_num=5
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
......
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -–max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~
# Select the backend used by run.sh from "local", "sge", "slurm", or "ssh"
cmd_backend='local'
# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then
# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"
# "qsub" (SGE, Torque, PBS, etc.)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.
export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"
# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partion" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".
export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"
elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.
export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"
# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then
export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/gpu.conf"
export decode_cmd="queue.pl --mem 4G"
else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi
......@@ -12,7 +12,7 @@ collator:
stride_ms: 10.0
window_ms: 25.0
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
batch_size: 32
batch_size: 30
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
minibatches: 0 # for debug
......@@ -59,7 +59,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: batch
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
......@@ -83,7 +83,7 @@ scheduler_conf:
lr_decay: 1.0
decoding:
batch_size: 64
batch_size: 1
error_rate_type: wer
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
dict_path=$2
ckpt_prefix=$3
......@@ -26,8 +22,7 @@ python3 -u ${BIN_DIR}/test.py \
--model-name 'u2_kaldi' \
--run-mode 'align' \
--dict-path ${dict_path} \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result-file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,15 +12,9 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/test.py \
--model-name 'u2_kaldi' \
--run-mode 'export' \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
#!/bin/bash
set -e
expdir=exp
datadir=data
nj=32
lmtag=
recog_set="test-clean test-other dev-clean dev-other"
recog_set="test-clean"
# bpemode (unigram or bpe)
nbpe=5000
bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
bpemodel=${bpeprefix}.model
if [ $# != 3 ];then
echo "usage: ${0} config_path dict_path ckpt_path_prefix"
exit -1
......@@ -8,13 +25,8 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
dict_path=$2
dict=$2
ckpt_prefix=$3
chunk_mode=false
......@@ -30,50 +42,49 @@ echo "chunk mode ${chunk_mode}"
# exit 1
#fi
for type in attention ctc_greedy_search; do
echo "decoding ${type}"
if [ ${chunk_mode} == true ];then
# stream decoding only support batchsize=1
pids=() # initialize pids
for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_rescoring; do
(
for rtask in ${recog_set}; do
(
decode_dir=decode_${rtask}_${dmethd}_$(basename ${config_path%.*})_${lmtag}
feat_recog_dir=${datadir}
mkdir -p ${expdir}/${decode_dir}
mkdir -p ${feat_recog_dir}
# split data
split_json.sh ${feat_recog_dir}/manifest.${rtask} ${nj}
#### use CPU for decoding
ngpu=0
# set batchsize 0 to disable batch decoding
batch_size=1
else
batch_size=64
fi
python3 -u ${BIN_DIR}/test.py \
--model-name u2_kaldi \
--run-mode test \
--dict-path ${dict_path} \
--device ${device} \
--nproc 1 \
--config ${config_path} \
--result-file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
python3 -u ${BIN_DIR}/test.py \
--model-name u2_kaldi \
--run-mode test \
--nproc ${ngpu} \
--dict-path ${dict} \
--config ${config_path} \
--checkpoint_path ${ckpt_prefix} \
--result-file ${expdir}/${decode_dir}/data.JOB.json \
--opts decoding.decoding_method ${dmethd} \
--opts decoding.batch_size ${batch_size} \
--opts data.test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel}.model --wer true ${expdir}/${decode_dir} ${dict}
for type in ctc_prefix_beam_search attention_rescoring; do
echo "decoding ${type}"
batch_size=1
python3 -u ${BIN_DIR}/test.py \
--model-name u2_kaldi \
--run-mode test \
--dict-path ${dict_path} \
--device ${device} \
--nproc 1 \
--config ${config_path} \
--result-file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} decoding.batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
) &
pids+=($!) # store background pids
done
) &
pids+=($!) # store background pids
done
i=0; for pid in "${pids[@]}"; do wait ${pid} || ((++i)); done
[ ${i} -gt 0 ] && echo "$0: ${i} background jobs are failed." && false
echo "Finished"
exit 0
......@@ -11,12 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
# seed may break model convergence
......@@ -27,7 +21,6 @@ fi
python3 -u ${BIN_DIR}/train.py \
--model-name u2_kaldi \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${PWD}/utils:${PATH}
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/tools/sctk/bin:${PWD}/utils:${PATH}
export LC_ALL=C
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
......
#!/bin/bash
set -e
source path.sh
. ./path.sh || exit 1;
. ./cmd.sh || exit 1;
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
dict_path=data/train_960_unigram5000_units.txt
avg_num=5
avg_num=10
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}
......@@ -20,12 +22,12 @@ fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=0,1,2,3 ./local/train.sh ${conf_path} ${ckpt}
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./local/train.sh ${conf_path} ${ckpt}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
avg.sh best exp/${ckpt}/checkpoints ${avg_num}
avg.sh latest exp/${ckpt}/checkpoints ${avg_num}
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -19,8 +15,7 @@ for type in fullsentence; do
echo "decoding ${type}"
batch_size=32
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -11,12 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
# seed may break model convergence
......@@ -26,7 +20,6 @@ if [ ${seed} != 0 ]; then
fi
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -22,8 +18,7 @@ mkdir -p ${output_dir}
# align dump in `result_file`
# .tier, .TextGrid dump in `dir of result_file`
python3 -u ${BIN_DIR}/alignment.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,13 +12,7 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,11 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -37,8 +32,7 @@ for type in attention ctc_greedy_search; do
batch_size=64
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......@@ -54,8 +48,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
echo "decoding ${type}"
batch_size=1
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -11,12 +11,6 @@ echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
echo "using ${device}..."
mkdir -p exp
# seed may break model convergence
......@@ -26,7 +20,6 @@ if [ ${seed} != 0 ]; then
fi
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -13,13 +13,7 @@ ckpt_path_prefix=$2
jit_model_export_path=$3
model_type=$4
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
model_type=$3
......@@ -23,8 +19,7 @@ if [ $? -ne 0 ]; then
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -10,17 +10,11 @@ source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
echo "using seed $seed & FLAGS_cudnn_deterministic=True ..."
fi
if [ $# != 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name model_type"
exit -1
......@@ -33,7 +27,6 @@ model_type=$3
mkdir -p exp
python3 -u ${BIN_DIR}/train.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -22,8 +18,7 @@ mkdir -p ${output_dir}
# align dump in `result_file`
# .tier, .TextGrid dump in `dir of result_file`
python3 -u ${BIN_DIR}/alignment.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.align \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,13 +12,7 @@ config_path=$1
ckpt_path_prefix=$2
jit_model_export_path=$3
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
python3 -u ${BIN_DIR}/export.py \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--checkpoint_path ${ckpt_path_prefix} \
......
......@@ -8,10 +8,6 @@ fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
config_path=$1
ckpt_prefix=$2
......@@ -35,8 +31,7 @@ for type in attention ctc_greedy_search; do
batch_size=64
fi
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......@@ -52,8 +47,7 @@ for type in ctc_prefix_beam_search attention_rescoring; do
echo "decoding ${type}"
batch_size=1
python3 -u ${BIN_DIR}/test.py \
--device ${device} \
--nproc 1 \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
......
......@@ -12,11 +12,6 @@ source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
device=gpu
if [ ${ngpu} == 0 ];then
device=cpu
fi
if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
echo "using seed $seed & FLAGS_cudnn_deterministic=True ..."
......@@ -34,7 +29,6 @@ mkdir -p exp
python3 -u ${BIN_DIR}/train.py \
--seed ${seed} \
--device ${device} \
--nproc ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
......
......@@ -13,7 +13,7 @@ null:null
null:null
##
trainer:norm_train
norm_train: ../../../deepspeech/exps/deepspeech2/bin/train.py --nproc 1 --config conf/deepspeech2.yaml --model_type offline --device gpu
norm_train: ../../../deepspeech/exps/deepspeech2/bin/train.py --nproc 1 --config conf/deepspeech2.yaml --model_type offline
pact_train:null
fpgm_train:null
distill_train:null
......@@ -21,7 +21,7 @@ null:null
null:null
##
===========================eval_params===========================
eval: ../../../deepspeech/exps/deepspeech2/bin/test.py --nproc 1 --config conf/deepspeech2.yaml --result_file tests/9.rsl --model_type offline --device gpu
eval: ../../../deepspeech/exps/deepspeech2/bin/test.py --nproc 1 --config conf/deepspeech2.yaml --result_file tests/9.rsl --model_type offline
null:null
##
===========================infer_params===========================
......
SHELL:= /bin/bash
PYTHON:= python3.7
CXX ?= g++
CC ?= gcc # used for sph2pipe
# CXX = clang++ # Uncomment these lines...
# CC = clang # ...to build with Clang.
WGET ?= wget
.PHONY: all clean
all: virtualenv kenlm.done sox.done soxbindings.done mfa.done
all: virtualenv kenlm.done sox.done soxbindings.done mfa.done sclite.done
virtualenv:
test -d venv || virtualenv -p $(PYTHON) venv
......@@ -39,3 +47,50 @@ mfa.done:
test -d montreal-forced-aligner || wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
tar xvf montreal-forced-aligner_linux.tar.gz
touch mfa.done
#== SCTK ===============================================================================
# SCTK official repo does not have version tags. Here's the mapping:
# # 2.4.9 = 659bc36; 2.4.10 = d914e1b; 2.4.11 = 20159b5.
SCTK_GITHASH = 20159b5
SCTK_CXFLAGS = -w -march=native
SCTK_MKENV = CFLAGS="$(CFLAGS) $(SCTK_CXFLAGS)" \
CXXFLAGS="$(CXXFLAGS) -std=c++11 $(SCTK_CXFLAGS)" \
# Keep the existing target 'sclite' to avoid breaking the users who might have
# scripted it in.
.PHONY: sclite.done sctk_cleaned sctk_made
sclite.done sctk_made: sctk/.compiled
touch sclite.done
sctk/.compiled: sctk
rm -f sctk/.compiled
$(SCTK_MKENV) $(MAKE) -C sctk config
$(SCTK_MKENV) $(MAKE) -C sctk all doc
$(MAKE) -C sctk install
touch sctk/.compiled
# The GitHub archive unpacks into SCTK-{40-character-long-hash}/
sctk: sctk-$(SCTK_GITHASH).tar.gz
tar zxvf sctk-$(SCTK_GITHASH).tar.gz
rm -rf sctk-$(SCTK_GITHASH) sctk
mv SCTK-$(SCTK_GITHASH)* sctk-$(SCTK_GITHASH)
ln -s sctk-$(SCTK_GITHASH) sctk
touch sctk-$(SCTK_GITHASH).tar.gz
sctk-$(SCTK_GITHASH).tar.gz:
if [ -d '$(DOWNLOAD_DIR)' ]; then \
cp -p '$(DOWNLOAD_DIR)/sctk-$(SCTK_GITHASH).tar.gz' .; \
else \
$(WGET) -nv -T 10 -t 3 -O sctk-$(SCTK_GITHASH).tar.gz \
https://github.com/usnistgov/SCTK/archive/$(SCTK_GITHASH).tar.gz; \
fi
sctk_cleaned:
-for d in sctk/ sctk-*/; do \
[ ! -f $$d/.compiled ] || $(MAKE) -C $$d clean; \
rm -f $$d/.compiled; \
done
# Utils
* [kaldi utils](https://github.com/kaldi-asr/kaldi/blob/cbed4ff688/egs/wsj/s5/utils)
* [espnet utils)(https://github.com/espnet/espnet/tree/master/utils)
......@@ -27,33 +27,33 @@ def main(args):
val_scores = []
beat_val_scores = []
selected_epochs = []
if args.val_best:
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores.append((epoch, loss))
val_scores = np.array(val_scores)
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
for y in jsons:
with open(y, 'r') as f:
dic_json = json.load(f)
loss = dic_json['val_loss']
epoch = dic_json['epoch']
if epoch >= args.min_epoch and epoch <= args.max_epoch:
val_scores.append((epoch, loss))
val_scores = np.array(val_scores)
if args.val_best:
sort_idx = np.argsort(val_scores[:, 1])
sorted_val_scores = val_scores[sort_idx]
path_list = [
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
beat_val_scores = sorted_val_scores[:args.num, 1]
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
print("best val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
else:
path_list = glob.glob(f'{args.ckpt_dir}/[!avg][!final]*.pdparams')
path_list = sorted(path_list, key=os.path.getmtime)
path_list = path_list[-args.num:]
sorted_val_scores = val_scores
beat_val_scores = sorted_val_scores[:args.num, 1]
selected_epochs = sorted_val_scores[:args.num, 0].astype(np.int64)
print("selected val scores = " + str(beat_val_scores))
print("selected epochs = " + str(selected_epochs))
path_list = [
args.ckpt_dir + '/{}.pdparams'.format(int(epoch))
for epoch in sorted_val_scores[:args.num, 0]
]
print(path_list)
avg = None
......@@ -78,6 +78,7 @@ def main(args):
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
with open(meta_path, 'w') as f:
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"ckpt": path_list,
"epoch": selected_epochs.tolist(),
......
#!/usr/bin/env bash
# 2020 author Jiayu DU
# Apache 2.0
# This script reads in an Arpa format language model, and converts it into the
# KenLM format language model.
[ -f path.sh ] && . ./path.sh;
# begin configuration section
kenlm_opts="" # e.g. "-q 8 -b 8" for 8bits quantization
model_type="trie" # "trie" or "probing". trie is smaller, probing is faster.
# end configuration section
. utils/parse_options.sh
if [ $# != 2 ]; then
echo "Usage: "
echo " $0 [options] <arpa-lm-path> <kenlm-path>"
echo "e.g.:"
echo " $0 data/local/lm/4gram.arpa data/lang_test/G.trie"
echo "Options:"
echo " --model-type can be either \"trie\" or \"probing\""
echo " --kenlm-opts directly pass through to kenlm"
echo " e.g. for 8bits quantization, feed \"-q 8 -b 8\""
exit 1;
fi
export LC_ALL=C
arpa_lm=$1
kenlm=$2
if ! which build_binary >& /dev/null ; then
echo "$0: cannot find KenLM's build_binary tool,"
echo "check kenlm installation (tools/extras/install_kenlm_query_only.sh)."
exit 1
fi
mkdir -p $(dirname $kenlm)
build_binary $kenlm_opts $model_type $arpa_lm $kenlm
echo "$0: Successfully built arpa into kenlm format: $kenlm"
exit 0
\ No newline at end of file
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
此差异已折叠。
文件模式从 100644 更改为 100755
此差异已折叠。
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
文件模式从 100644 更改为 100755
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100644 更改为 100755
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册