未验证 提交 5c4df656 编写于 作者: W WilliamZhang06 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

# Changelog
Date: 2022-1-19, Author: yt605155624.
Add features to: T2S:
- Add csmsc Tacotron2.
Date: 2022-1-29, Author: yt605155624.
Add features to: T2S:
- Update aishell3 vc0 with new Tacotron2.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1419
Date: 2022-1-29, Author: yt605155624.
Add features to: T2S:
- Add ljspeech Tacotron2.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1416
Date: 2022-1-24, Author: yt605155624.
Add features to: T2S:
- Add csmsc WaveRNN.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1379
Date: 2022-1-19, Author: yt605155624.
Add features to: T2S:
- Add csmsc Tacotron2.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1314
Date: 2022-1-10, Author: Jackwaterveg.
Add features to: CLI:
- Support English (librispeech/asr1/transformer).
Add features to: CLI:
- Support English (librispeech/asr1/transformer).
- Support choosing `decode_method` for conformer and transformer models.
- Refactor the config, using the unified config.
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1297
......@@ -16,8 +31,8 @@ Add features to: CLI:
***
Date: 2022-1-17, Author: Jackwaterveg.
Add features to: CLI:
- Support deepspeech2 online/offline model(aishell).
Add features to: CLI:
- Support deepspeech2 online/offline model(aishell).
- PRLink: https://github.com/PaddlePaddle/PaddleSpeech/pull/1356
***
......
......@@ -16,12 +16,15 @@
<p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-red.svg"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux-yellow.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleSpeech?color=ffa"></a>
<a href="support os"><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleSpeech?color=9ea"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleSpeech?color=3af"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleSpeech?color=9cc"></a>
<a href="https://github.com/PaddlePaddle/PaddleSpeech/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleSpeech?color=ccf"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://img.shields.io/pypi/dm/PaddleSpeech"></a>
<a href="=https://pypi.org/project/paddlespeech/"><img src="https://static.pepy.tech/badge/paddlespeech"></a>
<a href="https://huggingface.co/spaces"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"></a>
</p>
......@@ -143,6 +146,8 @@ For more synthesized audios, please refer to [PaddleSpeech Text-to-Speech sample
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech Demo Video](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
### 🔥 Hot Activities
- 2021.12.21~12.24
......@@ -317,14 +322,15 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr>
<tr>
<td rowspan="4">Acoustic Model</td>
<td >Tacotron2</td>
<td rowspan="2" >LJSpeech</td>
<td>Tacotron2</td>
<td>LJSpeech / CSMSC</td>
<td>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> / <a href = "./examples/csmsc/tts0">tacotron2-csmsc</a>
</td>
</tr>
<tr>
<td>Transformer TTS</td>
<td>LJSpeech</td>
<td>
<a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td>
......@@ -344,7 +350,7 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</td>
</tr>
<tr>
<td rowspan="5">Vocoder</td>
<td rowspan="6">Vocoder</td>
<td >WaveFlow</td>
<td >LJSpeech</td>
<td>
......@@ -378,7 +384,14 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
<td>
<a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a>
</td>
<tr>
</tr>
<tr>
<td >WaveRNN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc6">WaveRNN-csmsc</a>
</td>
</tr>
<tr>
<td rowspan="3">Voice Cloning</td>
<td>GE2E</td>
......@@ -416,7 +429,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr>
</thead>
<tbody>
<tr>
<td>Audio Classification</td>
<td>ESC-50</td>
......@@ -440,7 +452,6 @@ PaddleSpeech supports a series of most popular models. They are summarized in [r
</tr>
</thead>
<tbody>
<tr>
<td>Punctuation Restoration</td>
<td>IWLST2012_zh</td>
......@@ -488,7 +499,17 @@ author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSpeech}},
year={2021}
}
@inproceedings{zheng2021fused,
title={Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation},
author={Zheng, Renjie and Chen, Junkun and Ma, Mingbo and Huang, Liang},
booktitle={International Conference on Machine Learning},
pages={12736--12746},
year={2021},
organization={PMLR}
}
```
<a name="contribution"></a>
## Contribute to PaddleSpeech
......
......@@ -147,6 +147,8 @@ from https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readme
<div align="center"><a href="https://www.bilibili.com/video/BV1cL411V71o?share_source=copy_web"><img src="https://ai-studio-static-online.cdn.bcebos.com/06fd746ab32042f398fb6f33f873e6869e846fe63c214596ae37860fe8103720" / width="500px"></a></div>
- [PaddleSpeech 示例视频](https://paddlespeech.readthedocs.io/en/latest/demo_video.html)
### 🔥 热门活动
......@@ -315,14 +317,15 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr>
<tr>
<td rowspan="4">声学模型</td>
<td >Tacotron2</td>
<td rowspan="2" >LJSpeech</td>
<td>Tacotron2</td>
<td>LJSpeech / CSMSC</td>
<td>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a>
<a href = "./examples/ljspeech/tts0">tacotron2-ljspeech</a> / <a href = "./examples/csmsc/tts0">tacotron2-csmsc</a>
</td>
</tr>
<tr>
<td>Transformer TTS</td>
<td>LJSpeech</td>
<td>
<a href = "./examples/ljspeech/tts1">transformer-ljspeech</a>
</td>
......@@ -342,7 +345,7 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</td>
</tr>
<tr>
<td rowspan="5">声码器</td>
<td rowspan="6">声码器</td>
<td >WaveFlow</td>
<td >LJSpeech</td>
<td>
......@@ -376,7 +379,14 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
<td>
<a href = "./examples/csmsc/voc5">HiFiGAN-csmsc</a>
</td>
<tr>
</tr>
<tr>
<td >WaveRNN</td>
<td >CSMSC</td>
<td>
<a href = "./examples/csmsc/voc6">WaveRNN-csmsc</a>
</td>
</tr>
<tr>
<td rowspan="3">声音克隆</td>
<td>GE2E</td>
......@@ -415,8 +425,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr>
</thead>
<tbody>
<tr>
<td>声音分类</td>
<td>ESC-50</td>
......@@ -440,7 +448,6 @@ PaddleSpeech 的 **语音合成** 主要包含三个模块:文本前端、声
</tr>
</thead>
<tbody>
<tr>
<td>标点恢复</td>
<td>IWLST2012_zh</td>
......
Demo Video
==================
.. raw:: html
<video controls width="1024">
<source src="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/PaddleSpeech_Demo.mp4"
type="video/mp4">
Sorry, your browser doesn't support embedded videos.
</video>
......@@ -41,6 +41,7 @@ Contents
tts/gan_vocoder
tts/demo
tts/demo_2
.. toctree::
:maxdepth: 1
......@@ -50,12 +51,14 @@ Contents
.. toctree::
:maxdepth: 1
:caption: Acknowledgement
asr/reference
:caption: Demos
demo_video
tts_demo_video
.. toctree::
:maxdepth: 1
:caption: Acknowledgement
asr/reference
# Released Models
## Speech-to-Text Models
......@@ -32,14 +33,15 @@ Language Model | Training Data | Token-based | Size | Descriptions
### Acoustic Models
Model Type | Dataset| Example Link | Pretrained Models|Static Models|Size (static)
:-------------:| :------------:| :-----: | :-----:| :-----:| :-----:
Tacotron2|LJSpeech|[tacotron2-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts0)|[tacotron2_ljspeech_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.3.zip)|||
Tacotron2|LJSpeech|[tacotron2-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts0)|[tacotron2_ljspeech_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip)|||
Tacotron2|CSMSC|[tacotron2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts0)|[tacotron2_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip)|[tacotron2_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_static_0.2.0.zip)|103MB|
TransformerTTS| LJSpeech| [transformer-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts1)|[transformer_tts_ljspeech_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/transformer_tts/transformer_tts_ljspeech_ckpt_0.4.zip)|||
SpeedySpeech| CSMSC | [speedyspeech-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts2) |[speedyspeech_nosil_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_ckpt_0.5.zip)|[speedyspeech_nosil_baker_static_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_static_0.5.zip)|12MB|
FastSpeech2| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_nosil_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip)|[fastspeech2_nosil_baker_static_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip)|157MB|
FastSpeech2-Conformer| CSMSC |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/tts3)|[fastspeech2_conformer_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_conformer_baker_ckpt_0.5.zip)|||
FastSpeech2| AISHELL-3 |[fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/tts3)|[fastspeech2_nosil_aishell3_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip)|||
FastSpeech2| LJSpeech |[fastspeech2-ljspeech](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/tts3)|[fastspeech2_nosil_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip)|||
FastSpeech2| VCTK |[fastspeech2-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)|||
FastSpeech2| VCTK |[fastspeech2-vctk](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/tts3)|[fastspeech2_nosil_vctk_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip)|||
### Vocoders
Model Type | Dataset| Example Link | Pretrained Models| Static Models|Size (static)
......@@ -52,12 +54,14 @@ Parallel WaveGAN| VCTK |[PWGAN-vctk](https://github.com/PaddlePaddle/PaddleSpeec
|Multi Band MelGAN | CSMSC |[MB MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc3) | [mb_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip) <br>[mb_melgan_baker_finetune_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_baker_finetune_ckpt_0.5.zip)|[mb_melgan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip) |8.2MB|
Style MelGAN | CSMSC |[Style MelGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc4)|[style_melgan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip)| | |
HiFiGAN | CSMSC |[HiFiGAN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc5)|[hifigan_csmsc_ckpt_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip)|[hifigan_csmsc_static_0.1.1.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip)|50MB|
WaveRNN | CSMSC |[WaveRNN-csmsc](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/csmsc/voc6)|[wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip)|[wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip)|18MB|
### Voice Cloning
Model Type | Dataset| Example Link | Pretrained Models
:-------------:| :------------:| :-----: | :-----:
GE2E| AISHELL-3, etc. |[ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e)|[ge2e_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/ge2e/ge2e_ckpt_0.3.zip)
GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_0.3.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_0.3.zip)
GE2E + Tactron2| AISHELL-3 |[ge2e-tactron2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc0)|[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
GE2E + FastSpeech2 | AISHELL-3 |[ge2e-fastspeech2-aishell3](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1)|[fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_vc1_ckpt_0.5.zip)
......
......@@ -202,4 +202,4 @@ sf.write(
audio_path,
wav.numpy(),
samplerate=fastspeech2_config.fs)
```
\ No newline at end of file
```
TTS Demo Video
==================
.. raw:: html
<video controls width="1024">
<source src="https://paddlespeech.bj.bcebos.com/Parakeet/docs/demos/paddle2021_with_me.mp4"
type="video/mp4">
Sorry, your browser doesn't support embedded videos.
</video>
# Tacotron2 + AISHELL-3 Voice Cloning
This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows:
1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `Tacotron2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e).
......@@ -17,7 +16,7 @@ mkdir data_aishell3
tar zxvf data_aishell3.tgz -C data_aishell3
```
### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2.
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Pretrained GE2E Model
......@@ -117,3 +116,25 @@ ref_audio
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/voice_cloning.sh ${conf_path} ${train_output_path} ${ckpt_name} ${ge2e_params_path} ${ref_audio_dir}
```
## Pretrained Model
[tacotron2_aishell3_ckpt_vc0_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_aishell3_ckpt_vc0_0.2.0.zip)
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 2(gpu) x 37596|0.58704|0.39623|0.15073|0.039|1.9981e-04|
Tacotron2 checkpoint contains files listed below.
(There is no need for `speaker_id_map.txt` here )
```text
tacotron2_aishell3_ckpt_vc0_0.2.0
├── default.yaml # default config used to train tacotron2
├── phone_id_map.txt # phone vocabulary file when training tacotron2
├── snapshot_iter_37596.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training tacotron2
```
## More
We strongly recommend that you use [FastSpeech2 + AISHELL-3 Voice Cloning](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/vc1) which works better.
......@@ -77,7 +77,7 @@ optimizer:
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 200
max_epoch: 100
num_snapshots: 5
###########################################################
......
......@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2
MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
# FastSpeech2 + AISHELL-3 Voice Cloning
This example contains code used to train a [FastSpeech2](https://arxiv.org/abs/2006.04558) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf). The general steps are as follows:
1. Speaker Encoder: We use Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in `FastSpeech2` because the transcriptions are not needed, we use more datasets, refer to [ge2e](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/ge2e).
......
# Callcenter 8k sample rate
Data distribution:
```
676048 utts
491.4004722221223 h
4357792.0 text
2.4633630739178654 text/sec
2.6167397877068495 sec/utt
```
train/dev/test partition:
```
33802 manifest.dev
67606 manifest.test
574640 manifest.train
676048 total
```
......@@ -10,3 +10,5 @@
* voc2 - MelGAN
* voc3 - MultiBand MelGAN
* voc4 - Style MelGAN
* voc5 - HiFiGAN
* voc6 - WaveRNN
......@@ -212,6 +212,8 @@ optional arguments:
Pretrained Tacotron2 model with no silence in the edge of audios:
- [tacotron2_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip)
The static model can be downloaded here [tacotron2_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_static_0.2.0.zip).
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
......
......@@ -7,6 +7,7 @@ ckpt_name=$3
stage=0
stop_stage=0
# TODO: tacotron2 动转静的结果没有静态图的响亮, 可能还是 decode 的时候某个函数动静不对齐
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
......@@ -33,7 +34,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am=tacotron2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
......@@ -55,7 +56,7 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am=tacotron2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
......@@ -76,7 +77,7 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am=tacotron2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
......@@ -90,3 +91,24 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--inference_dir=${train_output_path}/inference \
--phones_dict=dump/phone_id_map.txt
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference
fi
\ No newline at end of file
......@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2
MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
......@@ -35,3 +35,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
......@@ -92,3 +92,26 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=speedyspeech_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/feats_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--tones_dict=dump/tone_id_map.txt \
--inference_dir=${train_output_path}/inference
fi
......@@ -243,6 +243,8 @@ fastspeech2_nosil_baker_ckpt_0.4
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
If you want to use fastspeech2_conformer, you must delete this line `--inference_dir=exp/default/inference \` to skip the step of dygraph to static graph, cause we haven't tested dygraph to static graph for fastspeech2_conformer till now.
```bash
source path.sh
......
......@@ -102,9 +102,9 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_test/default.yaml \
--voc_ckpt=wavernn_test/snapshot_iter_5000.pdz \
--voc_stat=wavernn_test/feats_stats.npy \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
......
......@@ -36,3 +36,8 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# inference with static model
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path} || exit -1
fi
# WaveRNN with CSMSC
This example contains code used to train a [WaveRNN](https://arxiv.org/abs/1802.08435) model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from the [official website](https://www.data-baker.com/data/index/source) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) results to cut silence at the edge of audio.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── feats_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and `test`, each of which contains a `norm` and `raw` subfolder. The `raw` folder contains the log magnitude of the mel spectrogram of each utterance, while the norm folder contains the normalized spectrogram. The statistics used to normalize the spectrogram are computed from the training set, which is located in `dump/train/feats_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains id and paths to the spectrogram of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Train a WaveRNN model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG config file to overwrite default config.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
### Synthesizing
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h] [--config CONFIG] [--checkpoint CHECKPOINT]
[--test-metadata TEST_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU]
Synthesize with WaveRNN.
optional arguments:
-h, --help show this help message and exit
--config CONFIG Vocoder config file.
--checkpoint CHECKPOINT
snapshot to load.
--test-metadata TEST_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
```
1. `--config` wavernn config file. You should use the same config with which the model is trained.
2. `--checkpoint` is the checkpoint to load. Pick one of the checkpoints from `checkpoints` inside the training output directory.
3. `--test-metadata` is the metadata of the test dataset. Use the `metadata.jsonl` in the `dev/norm` subfolder from the processed directory.
4. `--output-dir` is the directory to save the synthesized audio files.
5. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Models
The pretrained model can be downloaded here [wavernn_csmsc_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip).
The static model can be downloaded here [wavernn_csmsc_static_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_static_0.2.0.zip).
Model | Step | eval/loss
:-------------:|:------------:| :------------:
default| 1(gpu) x 400000|2.602768
WaveRNN checkpoint contains files listed below.
```text
wavernn_csmsc_ckpt_0.2.0
├── default.yaml # default config used to train wavernn
├── feats_stats.npy # statistics used to normalize spectrogram when training wavernn
└── snapshot_iter_400000.pdz # parameters of wavernn
```
# Tacotron2 with LJSpeech-1.1
This example contains code used to train a [Tacotron2](https://arxiv.org/abs/1712.05884) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/)
## Dataset
### Download and Extract
Download LJSpeech-1.1 from the [official website](https://keithito.com/LJ-Speech-Dataset/).
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get phonemes for Tacotron2, the durations of MFA are not needed here.
You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started
Assume the path to the dataset is `~/datasets/LJSpeech-1.1`.
Assume the path to the MFA result of LJSpeech-1.1 is `./ljspeech_alignment`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── norm
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, speaker, and the id of each utterance.
### Model Training
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path}
```
`./local/train.sh` calls `${BIN_DIR}/train.py`.
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
[--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
[--ngpu NGPU] [--phones-dict PHONES_DICT]
Train a Tacotron2 model.
optional arguments:
-h, --help show this help message and exit
--config CONFIG tacotron2 config file.
--train-metadata TRAIN_METADATA
training data.
--dev-metadata DEV_METADATA
dev data.
--output-dir OUTPUT_DIR
output dir.
--ngpu NGPU if ngpu == 0, use cpu.
--phones-dict PHONES_DICT
phone vocabulary file.
```
1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are saved in `checkpoints/` inside this directory.
4. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
5. `--phones-dict` is the path of the phone vocabulary file.
### Synthesizing
We use [parallel wavegan](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/ljspeech/voc1) as the neural vocoder.
Download pretrained parallel wavegan model from [pwg_ljspeech_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip) and unzip it.
```bash
unzip pwg_ljspeech_ckpt_0.5.zip
```
Parallel WaveGAN checkpoint contains files listed below.
```text
pwg_ljspeech_ckpt_0.5
├── pwg_default.yaml # default config used to train parallel wavegan
├── pwg_snapshot_iter_400000.pdz # generator parameters of parallel wavegan
└── pwg_stats.npy # statistics used to normalize spectrogram when training parallel wavegan
```
`./local/synthesize.sh` calls `${BIN_DIR}/../synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize.py [-h]
[--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT] [--speaker_dict SPEAKER_DICT]
[--voice-cloning VOICE_CLONING]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--ngpu NGPU]
[--test_metadata TEST_METADATA] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model. Use deault config when it is
None.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--voice-cloning VOICE_CLONING
whether training voice cloning model.
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc. Use deault config when it is None.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--ngpu NGPU if ngpu == 0, use cpu.
--test_metadata TEST_METADATA
test metadata.
--output_dir OUTPUT_DIR
output dir.
```
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/../synthesize_e2e.py`, which can synthesize waveform from text file.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
```
```text
usage: synthesize_e2e.py [-h]
[--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}]
[--am_config AM_CONFIG] [--am_ckpt AM_CKPT]
[--am_stat AM_STAT] [--phones_dict PHONES_DICT]
[--tones_dict TONES_DICT]
[--speaker_dict SPEAKER_DICT] [--spk_id SPK_ID]
[--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc}]
[--voc_config VOC_CONFIG] [--voc_ckpt VOC_CKPT]
[--voc_stat VOC_STAT] [--lang LANG]
[--inference_dir INFERENCE_DIR] [--ngpu NGPU]
[--text TEXT] [--output_dir OUTPUT_DIR]
Synthesize with acoustic model & vocoder
optional arguments:
-h, --help show this help message and exit
--am {speedyspeech_csmsc,speedyspeech_aishell3,fastspeech2_csmsc,fastspeech2_ljspeech,fastspeech2_aishell3,fastspeech2_vctk,tacotron2_csmsc}
Choose acoustic model type of tts task.
--am_config AM_CONFIG
Config of acoustic model. Use deault config when it is
None.
--am_ckpt AM_CKPT Checkpoint file of acoustic model.
--am_stat AM_STAT mean and standard deviation used to normalize
spectrogram when training acoustic model.
--phones_dict PHONES_DICT
phone vocabulary file.
--tones_dict TONES_DICT
tone vocabulary file.
--speaker_dict SPEAKER_DICT
speaker id map file.
--spk_id SPK_ID spk id for multi speaker acoustic model
--voc {pwgan_csmsc,pwgan_ljspeech,pwgan_aishell3,pwgan_vctk,mb_melgan_csmsc,style_melgan_csmsc,hifigan_csmsc}
Choose vocoder type of tts task.
--voc_config VOC_CONFIG
Config of voc. Use deault config when it is None.
--voc_ckpt VOC_CKPT Checkpoint file of voc.
--voc_stat VOC_STAT mean and standard deviation used to normalize
spectrogram when training voc.
--lang LANG Choose model language. zh or en
--inference_dir INFERENCE_DIR
dir to save inference models
--ngpu NGPU if ngpu == 0, use cpu.
--text TEXT text to synthesize, a 'utt_id sentence' pair per line.
--output_dir OUTPUT_DIR
output dir.
```
1. `--am` is acoustic model type with the format {model_name}_{dataset}
2. `--am_config`, `--am_checkpoint`, `--am_stat` and `--phones_dict` are arguments for acoustic model, which correspond to the 4 files in the Tacotron2 pretrained model.
3. `--voc` is vocoder type with the format {model_name}_{dataset}
4. `--voc_config`, `--voc_checkpoint`, `--voc_stat` are arguments for vocoder, which correspond to the 3 files in the parallel wavegan pretrained model.
5. `--lang` is the model language, which can be `zh` or `en`.
6. `--test_metadata` should be the metadata file in the normalized subfolder of `test` in the `dump` folder.
7. `--text` is the text file, which contains sentences to synthesize.
8. `--output_dir` is the directory to save synthesized audio files.
9. `--ngpu` is the number of gpus to use, if ngpu == 0, use cpu.
## Pretrained Model
Pretrained Tacotron2 model with no silence in the edge of audios:
- [tacotron2_ljspeech_ckpt_0.2.0.zip](https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip)
Model | Step | eval/loss | eval/l1_loss | eval/mse_loss | eval/bce_loss| eval/attn_loss
:-------------:| :------------:| :-----: | :-----: | :--------: |:--------:|:---------:
default| 1(gpu) x 60300|0.554092|0.394260|0.141046|0.018747|3.8e-05|
Tacotron2 checkpoint contains files listed below.
```text
tacotron2_ljspeech_ckpt_0.2.0
├── default.yaml # default config used to train Tacotron2
├── phone_id_map.txt # phone vocabulary file when training Tacotron2
├── snapshot_iter_60300.pdz # model parameters and optimizer states
└── speech_stats.npy # statistics used to normalize spectrogram when training Tacotron2
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences_en.txt` using pretrained Tacotron2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_ljspeech \
--am_config=tacotron2_ljspeech_ckpt_0.2.0/default.yaml \
--am_ckpt=tacotron2_ljspeech_ckpt_0.2.0/snapshot_iter_60300.pdz \
--am_stat=tacotron2_ljspeech_ckpt_0.2.0/speech_stats.npy \
--voc=pwgan_ljspeech\
--voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \
--voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \
--lang=en \
--text=${BIN_DIR}/../sentences_en.txt \
--output_dir=exp/default/test_e2e \
--phones_dict=tacotron2_ljspeech_ckpt_0.2.0/phone_id_map.txt
```
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
# TODO: dygraph to static graph is not good for tacotron2_ljspeech now
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=tacotron2_ljspeech \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_ljspeech \
--voc_config=pwg_ljspeech_ckpt_0.5/pwg_default.yaml \
--voc_ckpt=pwg_ljspeech_ckpt_0.5/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_ljspeech_ckpt_0.5/pwg_stats.npy \
--lang=en \
--text=${BIN_DIR}/../sentences_en.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
# --inference_dir=${train_output_path}/inference
\ No newline at end of file
......@@ -9,5 +9,5 @@ export PYTHONDONTWRITEBYTECODE=1
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=new_tacotron2
MODEL=tacotron2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}
# FastSpeech2 with the LJSpeech-1.1
# FastSpeech2 with LJSpeech-1.1
This example contains code used to train a [Fastspeech2](https://arxiv.org/abs/2006.04558) model with [LJSpeech-1.1](https://keithito.com/LJ-Speech-Dataset/).
## Dataset
......
dataset info refer to [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/index.html#about)
sv0 - speaker verfication with softmax backend etc, all python code
more info refer to the sv0/readme.txt
sv1 - dependence on kaldi, speaker verfication with plda/sc backend,
more info refer to the sv1/readme.txt
#!/usr/bin/python3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Make VoxCeleb1 trial of kaldi format
this script creat the test trial from kaldi trial voxceleb1_test_v2.txt or official trial veri_test2.txt
to kaldi trial format
"""
import argparse
import codecs
import os
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--voxceleb_trial",
default="voxceleb1_test_v2",
type=str,
help="VoxCeleb trial file. Default we use the kaldi trial voxceleb1_test_v2.txt")
parser.add_argument("--trial",
default="data/test/trial",
type=str,
help="Kaldi format trial file")
args = parser.parse_args()
def main(voxceleb_trial, trial):
"""
VoxCeleb provide several trial file, which format is different with kaldi format.
VoxCeleb format's meaning is as following:
--------------------------------
target_or_nontarget path1 path2
--------------------------------
target_or_nontarget is an integer: 1 target path1 is equal to path2
0 nontarget path1 is unequal to path2
path1: spkr_id/rec_id/name
path2: spkr_id/rec_id/name
Kaldi format's meaning is as following:
---------------------------------------
utt_id1 utt_id2 target_or_nontarget
---------------------------------------
utt_id1: utterance identification or speaker identification
utt_id2: utterance identification or speaker identification
target_or_nontarget is an string: 'target' utt_id1 is equal to utt_id2
'nontarget' utt_id2 is unequal to utt_id2
"""
print("Start convert the voxceleb trial to kaldi format")
if not os.path.exists(voxceleb_trial):
raise RuntimeError("{} does not exist. Pleas input the correct file path".format(voxceleb_trial))
trial_dirname = os.path.dirname(trial)
if not os.path.exists(trial_dirname):
os.mkdir(trial_dirname)
with codecs.open(voxceleb_trial, 'r', encoding='utf-8') as f, \
codecs.open(trial, 'w', encoding='utf-8') as w:
for line in f:
target_or_nontarget, path1, path2 = line.strip().split()
utt_id1 = "-".join(path1.split("/"))
utt_id2 = "-".join(path2.split("/"))
target = "nontarget"
if int(target_or_nontarget):
target = "target"
w.write("{} {} {}\n".format(utt_id1, utt_id2, target))
print("Convert the voxceleb trial to kaldi format successfully")
if __name__ == "__main__":
main(args.voxceleb_trial, args.trial)
......@@ -415,11 +415,11 @@ def mfcc(x,
**kwargs)
# librosa mfcc:
spect = librosa.feature.melspectrogram(x,sr=16000,n_fft=512,
spect = librosa.feature.melspectrogram(y=x,sr=16000,n_fft=512,
win_length=512,
hop_length=320,
n_mels=64, fmin=50)
b = librosa.feature.mfcc(x,
b = librosa.feature.mfcc(y=x,
sr=16000,
S=spect,
n_mfcc=20,
......
......@@ -311,8 +311,10 @@ class ASRExecutor(BaseExecutor):
audio = audio[:, 0]
# pcm16 -> pcm 32
audio = self._pcm16to32(audio)
audio = librosa.resample(audio, audio_sample_rate,
self.sample_rate)
audio = librosa.resample(
audio,
orig_sr=audio_sample_rate,
target_sr=self.sample_rate)
audio_sample_rate = self.sample_rate
# pcm32 -> pcm 16
audio = self._pcm32to16(audio)
......
......@@ -114,8 +114,9 @@ class CLSExecutor(BaseExecutor):
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
tag)
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
......
......@@ -112,8 +112,9 @@ class STExecutor(BaseExecutor):
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, "Can not find pretrained resources of {}.".format(
tag)
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
......
......@@ -124,8 +124,9 @@ class TextExecutor(BaseExecutor):
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
tag)
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
......
......@@ -117,6 +117,36 @@ pretrained_models = {
'speaker_dict':
'speaker_id_map.txt',
},
# tacotron2
"tacotron2_csmsc-zh": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_csmsc_ckpt_0.2.0.zip',
'md5':
'0df4b6f0bcbe0d73c5ed6df8867ab91a',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_30600.pdz',
'speech_stats':
'speech_stats.npy',
'phones_dict':
'phone_id_map.txt',
},
"tacotron2_ljspeech-en": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/tacotron2/tacotron2_ljspeech_ckpt_0.2.0.zip',
'md5':
'6a5eddd81ae0e81d16959b97481135f3',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_60300.pdz',
'speech_stats':
'speech_stats.npy',
'phones_dict':
'phone_id_map.txt',
},
# pwgan
"pwgan_csmsc-zh": {
'url':
......@@ -205,6 +235,20 @@ pretrained_models = {
'speech_stats':
'feats_stats.npy',
},
# wavernn
"wavernn_csmsc-zh": {
'url':
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/wavernn/wavernn_csmsc_ckpt_0.2.0.zip',
'md5':
'ee37b752f09bcba8f2af3b777ca38e13',
'config':
'default.yaml',
'ckpt':
'snapshot_iter_400000.pdz',
'speech_stats':
'feats_stats.npy',
}
}
model_alias = {
......@@ -217,6 +261,10 @@ model_alias = {
"paddlespeech.t2s.models.fastspeech2:FastSpeech2",
"fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......@@ -234,6 +282,10 @@ model_alias = {
"paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
"hifigan_inference":
"paddlespeech.t2s.models.hifigan:HiFiGANInference",
"wavernn":
"paddlespeech.t2s.models.wavernn:WaveRNN",
"wavernn_inference":
"paddlespeech.t2s.models.wavernn:WaveRNNInference",
}
......@@ -253,9 +305,13 @@ class TTSExecutor(BaseExecutor):
type=str,
default='fastspeech2_csmsc',
choices=[
'speedyspeech_csmsc', 'fastspeech2_csmsc',
'fastspeech2_ljspeech', 'fastspeech2_aishell3',
'fastspeech2_vctk'
'speedyspeech_csmsc',
'fastspeech2_csmsc',
'fastspeech2_ljspeech',
'fastspeech2_aishell3',
'fastspeech2_vctk',
'tacotron2_csmsc',
'tacotron2_ljspeech',
],
help='Choose acoustic model type of tts task.')
self.parser.add_argument(
......@@ -300,8 +356,14 @@ class TTSExecutor(BaseExecutor):
type=str,
default='pwgan_csmsc',
choices=[
'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc'
'pwgan_csmsc',
'pwgan_ljspeech',
'pwgan_aishell3',
'pwgan_vctk',
'mb_melgan_csmsc',
'style_melgan_csmsc',
'hifigan_csmsc',
'wavernn_csmsc',
],
help='Choose vocoder type of tts task.')
......@@ -340,8 +402,9 @@ class TTSExecutor(BaseExecutor):
"""
Download and returns pretrained resources path of current task.
"""
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
tag)
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
tag, '\n\t\t'.join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
......@@ -368,7 +431,7 @@ class TTSExecutor(BaseExecutor):
"""
Init model and other resources from a specific path.
"""
if hasattr(self, 'am') and hasattr(self, 'voc'):
if hasattr(self, 'am_inference') and hasattr(self, 'voc_inference'):
logger.info('Models had been initialized.')
return
# am
......@@ -488,6 +551,8 @@ class TTSExecutor(BaseExecutor):
vocab_size=vocab_size,
tone_size=tone_size,
**self.am_config["model"])
elif am_name == 'tacotron2':
am = am_class(idim=vocab_size, odim=odim, **self.am_config["model"])
am.set_state_dict(paddle.load(self.am_ckpt)["main_params"])
am.eval()
......@@ -505,10 +570,15 @@ class TTSExecutor(BaseExecutor):
voc_class = dynamic_import(voc_name, model_alias)
voc_inference_class = dynamic_import(voc_name + '_inference',
model_alias)
voc = voc_class(**self.voc_config["generator_params"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"])
voc.remove_weight_norm()
voc.eval()
if voc_name != 'wavernn':
voc = voc_class(**self.voc_config["generator_params"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"])
voc.remove_weight_norm()
voc.eval()
else:
voc = voc_class(**self.voc_config["model"])
voc.set_state_dict(paddle.load(self.voc_ckpt)["main_params"])
voc.eval()
voc_mu, voc_std = np.load(self.voc_stat)
voc_mu = paddle.to_tensor(voc_mu)
voc_std = paddle.to_tensor(voc_std)
......
......@@ -175,7 +175,7 @@ class U2Trainer(Trainer):
observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size']
observation['ips,sent./sec'] = observation[
observation['ips,samples/s'] = observation[
'batch_size'] / observation['batch_cost']
for k, v in observation.items():
msg += f" {k.split(',')[0]}: "
......
......@@ -419,7 +419,7 @@ def make_batchset(
# sort it by input lengths (long to short)
sorted_data = sorted(
d.items(),
key=lambda data: int(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
key=lambda data: float(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
reverse=not shortest_first, )
logger.info("# utts: " + str(len(sorted_data)))
......
......@@ -61,7 +61,7 @@ class BatchDataLoader():
def __init__(self,
json_file: str,
train_mode: bool,
sortagrad: bool=False,
sortagrad: int=0,
batch_size: int=0,
maxlen_in: float=float('inf'),
maxlen_out: float=float('inf'),
......
......@@ -252,8 +252,7 @@ class Trainer():
if self.args.benchmark_max_step and self.iteration > self.args.benchmark_max_step:
logger.info(
f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
sys.exit(
f"Reach benchmark-max-step: {self.args.benchmark_max_step}")
sys.exit(0)
def do_train(self):
"""The training process control by epoch."""
......@@ -282,7 +281,7 @@ class Trainer():
observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size']
observation['ips[sent./sec]'] = observation[
observation['ips samples/s'] = observation[
'batch_size'] / observation['batch_cost']
for k, v in observation.items():
msg += f" {k}: "
......
......@@ -90,7 +90,8 @@ class SpeedPerturbation():
# Note1: resample requires the sampling-rate of input and output,
# but actually only the ratio is used.
y = librosa.resample(x, ratio, 1, res_type=self.res_type)
y = librosa.resample(
x, orig_sr=ratio, target_sr=1, res_type=self.res_type)
if self.keep_length:
diff = abs(len(x) - len(y))
......
......@@ -38,7 +38,7 @@ def stft(x,
x = np.stack(
[
librosa.stft(
x[:, ch],
y=x[:, ch],
n_fft=n_fft,
hop_length=n_shift,
win_length=win_length,
......@@ -67,7 +67,7 @@ def istft(x, n_shift, win_length=None, window="hann", center=True):
x = np.stack(
[
librosa.istft(
x[:, ch].T, # [Time, Freq] -> [Freq, Time]
stft_matrix=x[:, ch].T, # [Time, Freq] -> [Freq, Time]
hop_length=n_shift,
win_length=win_length,
window=window,
......@@ -95,7 +95,8 @@ def stft2logmelspectrogram(x_stft,
# spc: (Time, Channel, Freq) or (Time, Freq)
spc = np.abs(x_stft)
# mel_basis: (Mel_freq, Freq)
mel_basis = librosa.filters.mel(fs, n_fft, n_mels, fmin, fmax)
mel_basis = librosa.filters.mel(
sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
# lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq)
lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))
......
......@@ -13,7 +13,6 @@
# limitations under the License.
import logging
from . import data
from . import datasets
from . import exps
from . import frontend
......
......@@ -53,8 +53,8 @@ class AudioProcessor(object):
def _create_mel_filter(self):
mel_filter = librosa.filters.mel(
self.sample_rate,
self.n_fft,
sr=self.sample_rate,
n_fft=self.n_fft,
n_mels=self.n_mels,
fmin=self.fmin,
fmax=self.fmax)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""t2s's infrastructure for data processing.
"""
from .batch import *
from .dataset import *
......@@ -11,5 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .common import *
from .ljspeech import *
......@@ -14,7 +14,7 @@
import numpy as np
import paddle
from paddlespeech.t2s.data.batch import batch_sequences
from paddlespeech.t2s.datasets.batch import batch_sequences
def tacotron2_single_spk_batch_fn(examples):
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import List
import librosa
import numpy as np
from paddle.io import Dataset
__all__ = ["AudioSegmentDataset", "AudioDataset", "AudioFolderDataset"]
class AudioSegmentDataset(Dataset):
"""A simple dataset adaptor for audio files to train vocoders.
Read -> trim silence -> normalize -> extract a segment
"""
def __init__(self,
file_paths: List[Path],
sample_rate: int,
length: int,
top_db: float):
self.file_paths = file_paths
self.sr = sample_rate
self.top_db = top_db
self.length = length # samples in the clip
def __getitem__(self, i):
fpath = self.file_paths[i]
y, sr = librosa.load(fpath, self.sr)
y, _ = librosa.effects.trim(y, top_db=self.top_db)
y = librosa.util.normalize(y)
y = y.astype(np.float32)
# pad or trim
if y.size <= self.length:
y = np.pad(y, [0, self.length - len(y)], mode='constant')
else:
start = np.random.randint(0, 1 + len(y) - self.length)
y = y[start:start + self.length]
return y
def __len__(self):
return len(self.file_paths)
class AudioDataset(Dataset):
"""A simple dataset adaptor for the audio files.
Read -> trim silence -> normalize
"""
def __init__(self,
file_paths: List[Path],
sample_rate: int,
top_db: float=60):
self.file_paths = file_paths
self.sr = sample_rate
self.top_db = top_db
def __getitem__(self, i):
fpath = self.file_paths[i]
y, sr = librosa.load(fpath, self.sr)
y, _ = librosa.effects.trim(y, top_db=self.top_db)
y = librosa.util.normalize(y)
y = y.astype(np.float32)
return y
def __len__(self):
return len(self.file_paths)
class AudioFolderDataset(AudioDataset):
def __init__(
self,
root,
sample_rate,
top_db=60,
extension=".wav", ):
root = Path(root).expanduser()
file_paths = sorted(list(root.rglob("*{}".format(extension))))
super().__init__(file_paths, sample_rate, top_db)
......@@ -22,26 +22,17 @@ from paddle.io import Dataset
class DataTable(Dataset):
"""Dataset to load and convert data for general purpose.
Parameters
----------
data : List[Dict[str, Any]]
Metadata, a list of meta datum, each of which is composed of
several fields
fields : List[str], optional
Fields to use, if not specified, all the fields in the data are
used, by default None
converters : Dict[str, Callable], optional
Converters used to process each field, by default None
use_cache : bool, optional
Whether to use cache, by default False
Raises
------
ValueError
If there is some field that does not exist in data.
ValueError
If there is some field in converters that does not exist in fields.
Args:
data (List[Dict[str, Any]]): Metadata, a list of meta datum, each of which is composed of several fields
fields (List[str], optional): Fields to use, if not specified, all the fields in the data are used, by default None
converters (Dict[str, Callable], optional): Converters used to process each field, by default None
use_cache (bool, optional): Whether to use cache, by default False
Raises:
ValueError:
If there is some field that does not exist in data.
ValueError:
If there is some field in converters that does not exist in fields.
"""
def __init__(self,
......@@ -95,15 +86,11 @@ class DataTable(Dataset):
"""Convert a meta datum to an example by applying the corresponding
converters to each fields requested.
Parameters
----------
meta_datum : Dict[str, Any]
Meta datum
Args:
meta_datum (Dict[str, Any]): Meta datum
Returns
-------
Dict[str, Any]
Converted example
Returns:
Dict[str, Any]: Converted example
"""
example = {}
for field in self.fields:
......@@ -118,16 +105,11 @@ class DataTable(Dataset):
def __getitem__(self, idx: int) -> Dict[str, Any]:
"""Get an example given an index.
Args:
idx (int): Index of the example to get
Parameters
----------
idx : int
Index of the example to get
Returns
-------
Dict[str, Any]
A converted example
Returns:
Dict[str, Any]: A converted example
"""
if self.use_cache and self.caches[idx] is not None:
return self.caches[idx]
......
......@@ -258,4 +258,4 @@ class ChainDataset(Dataset):
return dataset[i]
i -= len(dataset)
raise IndexError("dataset index out of range")
raise IndexError("dataset index out of range")
\ No newline at end of file
......@@ -18,14 +18,10 @@ import re
def get_phn_dur(file_name):
'''
read MFA duration.txt
Parameters
----------
file_name : str or Path
path of gen_duration_from_textgrid.py's result
Returns
----------
Dict
sentence: {'utt': ([char], [int])}
Args:
file_name (str or Path): path of gen_duration_from_textgrid.py's result
Returns:
Dict: sentence: {'utt': ([char], [int])}
'''
f = open(file_name, 'r')
sentence = {}
......@@ -48,10 +44,8 @@ def get_phn_dur(file_name):
def merge_silence(sentence):
'''
merge silences
Parameters
----------
sentence : Dict
sentence: {'utt': (([char], [int]), str)}
Args:
sentence (Dict): sentence: {'utt': (([char], [int]), str)}
'''
for utt in sentence:
cur_phn, cur_dur, speaker = sentence[utt]
......@@ -81,12 +75,9 @@ def merge_silence(sentence):
def get_input_token(sentence, output_path, dataset="baker"):
'''
get phone set from training data and save it
Parameters
----------
sentence : Dict
sentence: {'utt': ([char], [int])}
output_path : str or path
path to save phone_id_map
Args:
sentence (Dict): sentence: {'utt': ([char], [int])}
output_path (str or path):path to save phone_id_map
'''
phn_token = set()
for utt in sentence:
......@@ -112,14 +103,10 @@ def get_phones_tones(sentence,
dataset="baker"):
'''
get phone set and tone set from training data and save it
Parameters
----------
sentence : Dict
sentence: {'utt': ([char], [int])}
phones_output_path : str or path
path to save phone_id_map
tones_output_path : str or path
path to save tone_id_map
Args:
sentence (Dict): sentence: {'utt': ([char], [int])}
phones_output_path (str or path): path to save phone_id_map
tones_output_path (str or path): path to save tone_id_map
'''
phn_token = set()
tone_token = set()
......@@ -162,14 +149,10 @@ def get_spk_id_map(speaker_set, output_path):
def compare_duration_and_mel_length(sentences, utt, mel):
'''
check duration error, correct sentences[utt] if possible, else pop sentences[utt]
Parameters
----------
sentences : Dict
sentences[utt] = [phones_list ,durations_list]
utt : str
utt_id
mel : np.ndarry
features (num_frames, n_mels)
Args:
sentences (Dict): sentences[utt] = [phones_list ,durations_list]
utt (str): utt_id
mel (np.ndarry): features (num_frames, n_mels)
'''
if utt in sentences:
......
......@@ -29,15 +29,11 @@ class Clip(object):
hop_size=256,
aux_context_window=0, ):
"""Initialize customized collater for DataLoader.
Args:
Parameters
----------
batch_max_steps : int
The maximum length of input signal in batch.
hop_size : int
Hop size of auxiliary features.
aux_context_window : int
Context window size for auxiliary feature conv.
batch_max_steps (int): The maximum length of input signal in batch.
hop_size (int): Hop size of auxiliary features.
aux_context_window (int): Context window size for auxiliary feature conv.
"""
if batch_max_steps % hop_size != 0:
......@@ -56,18 +52,15 @@ class Clip(object):
def __call__(self, batch):
"""Convert into batch tensors.
Parameters
----------
batch : list
list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns
----------
Tensor
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Tensor
Target signal batch (B, 1, T).
Returns:
Tensor:
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Tensor:
Target signal batch (B, 1, T).
"""
# check length
......@@ -104,11 +97,10 @@ class Clip(object):
def _adjust_length(self, x, c):
"""Adjust the audio and feature lengths.
Note
-------
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) < c.shape[0] * self.hop_size:
......@@ -162,22 +154,14 @@ class WaveRNNClip(Clip):
# voc_pad = 2 this will pad the input so that the resnet can 'see' wider than input length
# max_offsets = n_frames - 2 - (mel_win + 2 * hp.voc_pad) = n_frames - 15
"""Convert into batch tensors.
Parameters
----------
batch : list
list of tuple of the pair of audio and features.
Audio shape (T, ), features shape(T', C).
Returns
----------
Tensor
Input signal batch (B, 1, T).
Tensor
Target signal batch (B, 1, T).
Tensor
Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape (T, ), features shape(T', C).
Returns:
Tensor: Input signal batch (B, 1, T).
Tensor: Target signal batch (B, 1, T).
Tensor: Auxiliary feature batch (B, C, T'),
where T = (T' - 2 * aux_context_window) * hop_size.
"""
# check length
......
......@@ -27,9 +27,9 @@ import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import Energy
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.data.get_feats import Pitch
from paddlespeech.t2s.datasets.get_feats import Energy
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import Pitch
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
......
......@@ -160,9 +160,8 @@ def train_sp(args, config):
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
......
......@@ -231,9 +231,9 @@ def train_sp(args, config):
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
......
......@@ -219,9 +219,9 @@ def train_sp(args, config):
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
......
......@@ -23,7 +23,7 @@ import soundfile as sf
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.parallel_wavegan import PWGInference
from paddlespeech.t2s.modules.normalizer import ZScore
......
......@@ -194,11 +194,10 @@ def train_sp(args, config):
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
# print(trainer.extensions.keys())
print("Trainer Done!")
trainer.run()
......
......@@ -27,7 +27,7 @@ import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
from paddlespeech.t2s.utils import str2bool
......
......@@ -212,9 +212,9 @@ def train_sp(args, config):
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
......
......@@ -27,7 +27,7 @@ import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
from paddlespeech.t2s.datasets.preprocess_utils import get_phones_tones
......
......@@ -171,8 +171,8 @@ def train_sp(args, config):
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
......
......@@ -38,9 +38,9 @@ model_alias = {
"fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2",
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference",
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......
......@@ -39,9 +39,9 @@ model_alias = {
"fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2",
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference",
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......@@ -229,6 +229,11 @@ def evaluate(args):
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
merge_sentences = False
# Avoid not stopping at the end of a sub sentence when tacotron2_ljspeech dygraph to static graph
# but still not stopping in the end (NOTE by yuantian01 Feb 9 2022)
if am_name == 'tacotron2':
merge_sentences = True
for utt_id, sentence in sentences:
get_tone_ids = False
if am_name == 'speedyspeech':
......
......@@ -27,7 +27,7 @@ import tqdm
import yaml
from yacs.config import CfgNode
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
......
......@@ -30,9 +30,9 @@ from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_multi_spk_batch_fn
from paddlespeech.t2s.datasets.am_batch_fn import tacotron2_single_spk_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2Evaluator
from paddlespeech.t2s.models.new_tacotron2 import Tacotron2Updater
from paddlespeech.t2s.models.tacotron2 import Tacotron2
from paddlespeech.t2s.models.tacotron2 import Tacotron2Evaluator
from paddlespeech.t2s.models.tacotron2 import Tacotron2Updater
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import build_optimizers
......@@ -155,9 +155,8 @@ def train_sp(args, config):
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
......
......@@ -26,20 +26,17 @@ import tqdm
import yaml
from yacs.config import CfgNode as Configuration
from paddlespeech.t2s.data.get_feats import LogMelFBank
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
from paddlespeech.t2s.frontend import English
def get_lj_sentences(file_name, frontend):
'''
read MFA duration.txt
Parameters
----------
file_name : str or Path
Returns
----------
Dict
sentence: {'utt': ([char], [int])}
'''read MFA duration.txt
Args:
file_name (str or Path)
Returns:
Dict: sentence: {'utt': ([char], [int])}
'''
f = open(file_name, 'r')
sentence = {}
......@@ -59,14 +56,11 @@ def get_lj_sentences(file_name, frontend):
def get_input_token(sentence, output_path):
'''
get phone set from training data and save it
Parameters
----------
sentence : Dict
sentence: {'utt': ([char], str)}
output_path : str or path
path to save phone_id_map
'''get phone set from training data and save it
Args:
sentence (Dict): sentence: {'utt': ([char], str)}
output_path (str or path): path to save phone_id_map
'''
phn_token = set()
for utt in sentence:
......
......@@ -148,9 +148,8 @@ def train_sp(args, config):
if dist.get_rank() == 0:
trainer.extend(evaluator, trigger=(1, "epoch"))
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
# print(trainer.extensions)
trainer.extend(
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
trainer.run()
......
......@@ -34,9 +34,9 @@ model_alias = {
"fastspeech2_inference":
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
"tacotron2":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2",
"paddlespeech.t2s.models.tacotron2:Tacotron2",
"tacotron2_inference":
"paddlespeech.t2s.models.new_tacotron2:Tacotron2Inference",
"paddlespeech.t2s.models.tacotron2:Tacotron2Inference",
# voc
"pwgan":
"paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
......
......@@ -17,8 +17,8 @@ import numpy as np
import pandas
from paddle.io import Dataset
from paddlespeech.t2s.data.batch import batch_spec
from paddlespeech.t2s.data.batch import batch_wav
from paddlespeech.t2s.datasets.batch import batch_spec
from paddlespeech.t2s.datasets.batch import batch_wav
class LJSpeech(Dataset):
......
......@@ -19,7 +19,7 @@ from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddlespeech.t2s.data import dataset
from paddlespeech.t2s.datasets import dataset
from paddlespeech.t2s.exps.waveflow.config import get_cfg_defaults
from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeech
from paddlespeech.t2s.exps.waveflow.ljspeech import LJSpeechClipCollector
......
......@@ -31,7 +31,7 @@ from paddlespeech.t2s.models.wavernn import WaveRNN
def main():
parser = argparse.ArgumentParser(description="Synthesize with WaveRNN.")
parser.add_argument("--config", type=str, help="GANVocoder config file.")
parser.add_argument("--config", type=str, help="Vocoder config file.")
parser.add_argument("--checkpoint", type=str, help="snapshot to load.")
parser.add_argument("--test-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
......
......@@ -168,9 +168,9 @@ def train_sp(args, config):
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
......@@ -179,7 +179,7 @@ def train_sp(args, config):
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
parser = argparse.ArgumentParser(description="Train a WaveRNN model.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config.")
parser.add_argument("--train-metadata", type=str, help="training data.")
......
......@@ -133,16 +133,11 @@ class ARPABET(Phonetics):
def phoneticize(self, sentence, add_start_end=False):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Args:
sentence (str): The input text sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
phonemes = [
self._remove_vowels(item) for item in self.backend(sentence)
......@@ -156,16 +151,12 @@ class ARPABET(Phonetics):
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Parameters
-----------
phonemes: List[str]
The list of pronunciation sequence.
Args:
phonemes (List[str]): The list of pronunciation sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [self.vocab.lookup(item) for item in phonemes]
return ids
......@@ -173,30 +164,23 @@ class ARPABET(Phonetics):
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters
-----------
ids: List[int]
The list of pronunciation id sequence.
Args:
ids( List[int]): The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Returns:
List[str]:
The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence, add_start_end=False):
""" Convert the input text sequence into pronunciation id sequence.
Parameters
-----------
sentence: str
The input text sequence.
Args:
sentence (str): The input text sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(
self.phoneticize(sentence, add_start_end=add_start_end))
......@@ -229,15 +213,11 @@ class ARPABETWithStress(Phonetics):
def phoneticize(self, sentence, add_start_end=False):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Parameters
-----------
sentence: str
The input text sequence.
Args:
sentence (str): The input text sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
phonemes = self.backend(sentence)
if add_start_end:
......@@ -249,47 +229,33 @@ class ARPABETWithStress(Phonetics):
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Parameters
-----------
phonemes: List[str]
The list of pronunciation sequence.
Args:
phonemes (List[str]): The list of pronunciation sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [self.vocab.lookup(item) for item in phonemes]
return ids
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters
-----------
ids: List[int]
The list of pronunciation id sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence, add_start_end=False):
""" Convert the input text sequence into pronunciation id sequence.
Args:
sentence (str): The input text sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(
self.phoneticize(sentence, add_start_end=add_start_end))
......
......@@ -65,14 +65,10 @@ class English(Phonetics):
def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
start = self.vocab.start_symbol
end = self.vocab.end_symbol
......@@ -83,11 +79,6 @@ class English(Phonetics):
return phonemes
def _p2id(self, phonemes: List[str]) -> np.array:
# replace unk phone with sp
phonemes = [
phn if (phn in self.vocab_phones and phn not in self.punc) else "sp"
for phn in phonemes
]
phone_ids = [self.vocab_phones[item] for item in phonemes]
return np.array(phone_ids, np.int64)
......@@ -102,6 +93,12 @@ class English(Phonetics):
# remove start_symbol and end_symbol
phones = phones[1:-1]
phones = [phn for phn in phones if not phn.isspace()]
# replace unk phone with sp
phones = [
phn
if (phn in self.vocab_phones and phn not in self.punc) else "sp"
for phn in phones
]
phones_list.append(phones)
if merge_sentences:
......@@ -122,14 +119,10 @@ class English(Phonetics):
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Parameters
-----------
phonemes: List[str]
The list of pronunciation sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
Args:
phonemes (List[str]): The list of pronunciation sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [
self.vocab.lookup(item) for item in phonemes
......@@ -139,27 +132,19 @@ class English(Phonetics):
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters
-----------
ids: List[int]
The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
Args:
sentence(str): The input text sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
......@@ -182,28 +167,21 @@ class EnglishCharacter(Phonetics):
def phoneticize(self, sentence):
""" Normalize the input text sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
str
A text sequence after normalize.
Args:
sentence(str): The input text sequence.
Returns:
str: A text sequence after normalize.
"""
words = normalize(sentence)
return words
def numericalize(self, sentence):
""" Convert a text sequence into ids.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[int]
List of a character id sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[int]:
List of a character id sequence.
"""
ids = [
self.vocab.lookup(item) for item in sentence
......@@ -213,27 +191,19 @@ class EnglishCharacter(Phonetics):
def reverse(self, ids):
""" Convert a character id sequence into text.
Parameters
-----------
ids: List[int]
List of a character id sequence.
Returns
----------
str
The input text sequence.
Args:
ids (List[int]): List of a character id sequence.
Returns:
str: The input text sequence.
"""
return [self.vocab.reverse(i) for i in ids]
def __call__(self, sentence):
""" Normalize the input text sequence and convert it into character id sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[int]
List of a character id sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[int]: List of a character id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
......@@ -263,14 +233,10 @@ class Chinese(Phonetics):
def phoneticize(self, sentence):
""" Normalize the input text sequence and convert it into pronunciation sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Args:
sentence(str): The input text sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
# simplified = self.opencc_backend.convert(sentence)
simplified = sentence
......@@ -295,28 +261,20 @@ class Chinese(Phonetics):
def numericalize(self, phonemes):
""" Convert pronunciation sequence into pronunciation id sequence.
Parameters
-----------
phonemes: List[str]
The list of pronunciation sequence.
Returns
----------
List[int]
The list of pronunciation id sequence.
Args:
phonemes(List[str]): The list of pronunciation sequence.
Returns:
List[int]: The list of pronunciation id sequence.
"""
ids = [self.vocab.lookup(item) for item in phonemes]
return ids
def __call__(self, sentence):
""" Convert the input text sequence into pronunciation id sequence.
Parameters
-----------
sentence: str
The input text sequence.
Returns
----------
List[str]
The list of pronunciation id sequence.
Args:
sentence (str): The input text sequence.
Returns:
List[str]: The list of pronunciation id sequence.
"""
return self.numericalize(self.phoneticize(sentence))
......@@ -328,13 +286,9 @@ class Chinese(Phonetics):
def reverse(self, ids):
""" Reverse the list of pronunciation id sequence to a list of pronunciation sequence.
Parameters
-----------
ids: List[int]
The list of pronunciation id sequence.
Returns
----------
List[str]
The list of pronunciation sequence.
Args:
ids (List[int]): The list of pronunciation id sequence.
Returns:
List[str]: The list of pronunciation sequence.
"""
return [self.vocab.reverse(i) for i in ids]
......@@ -20,22 +20,12 @@ __all__ = ["Vocab"]
class Vocab(object):
""" Vocabulary.
Parameters
-----------
symbols: Iterable[str]
Common symbols.
padding_symbol: str, optional
Symbol for pad. Defaults to "<pad>".
unk_symbol: str, optional
Symbol for unknow. Defaults to "<unk>"
start_symbol: str, optional
Symbol for start. Defaults to "<s>"
end_symbol: str, optional
Symbol for end. Defaults to "</s>"
Args:
symbols (Iterable[str]): Common symbols.
padding_symbol (str, optional): Symbol for pad. Defaults to "<pad>".
unk_symbol (str, optional): Symbol for unknow. Defaults to "<unk>"
start_symbol (str, optional): Symbol for start. Defaults to "<s>"
end_symbol (str, optional): Symbol for end. Defaults to "</s>"
"""
def __init__(self,
......
......@@ -44,12 +44,10 @@ RE_TIME_RANGE = re.compile(r'([0-1]?[0-9]|2[0-3])'
def replace_time(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
is_range = len(match.groups()) > 5
......@@ -87,12 +85,10 @@ RE_DATE = re.compile(r'(\d{4}|\d{2})年'
def replace_date(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
year = match.group(1)
month = match.group(3)
......@@ -114,12 +110,10 @@ RE_DATE2 = re.compile(
def replace_date2(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
year = match.group(1)
month = match.group(3)
......
......@@ -36,12 +36,10 @@ RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)')
def replace_frac(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
sign = match.group(1)
nominator = match.group(2)
......@@ -59,12 +57,10 @@ RE_PERCENTAGE = re.compile(r'(-?)(\d+(\.\d+)?)%')
def replace_percentage(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
sign = match.group(1)
percent = match.group(2)
......@@ -81,12 +77,10 @@ RE_INTEGER = re.compile(r'(-)' r'(\d+)')
def replace_negative_num(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
sign = match.group(1)
number = match.group(2)
......@@ -103,12 +97,10 @@ RE_DEFAULT_NUM = re.compile(r'\d{3}\d*')
def replace_default_num(match):
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
number = match.group(0)
return verbalize_digit(number)
......@@ -124,12 +116,10 @@ RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))')
def replace_positive_quantifier(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
number = match.group(1)
match_2 = match.group(2)
......@@ -142,12 +132,10 @@ def replace_positive_quantifier(match) -> str:
def replace_number(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
sign = match.group(1)
number = match.group(2)
......@@ -169,12 +157,10 @@ RE_RANGE = re.compile(
def replace_range(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
first, second = match.group(1), match.group(8)
first = RE_NUMBER.sub(replace_number, first)
......@@ -222,7 +208,7 @@ def verbalize_digit(value_string: str, alt_one=False) -> str:
result_symbols = [DIGITS[digit] for digit in value_string]
result = ''.join(result_symbols)
if alt_one:
result.replace("一", "幺")
result = result.replace("一", "幺")
return result
......
......@@ -45,23 +45,19 @@ def phone2str(phone_string: str, mobile=True) -> str:
def replace_phone(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
return phone2str(match.group(0), mobile=False)
def replace_mobile(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
return phone2str(match.group(0))
......@@ -22,12 +22,10 @@ RE_TEMPERATURE = re.compile(r'(-?)(\d+(\.\d+)?)(°C|℃|度|摄氏度)')
def replace_temperature(match) -> str:
"""
Parameters
----------
match : re.Match
Returns
----------
str
Args:
match (re.Match)
Returns:
str
"""
sign = match.group(1)
temperature = match.group(2)
......
......@@ -55,14 +55,10 @@ class TextNormalizer():
def _split(self, text: str, lang="zh") -> List[str]:
"""Split long text into sentences with sentence-splitting punctuations.
Parameters
----------
text : str
The input text.
Returns
-------
List[str]
Sentences.
Args:
text (str): The input text.
Returns:
List[str]: Sentences.
"""
# Only for pure Chinese here
if lang == "zh":
......
......@@ -14,9 +14,9 @@
from .fastspeech2 import *
from .hifigan import *
from .melgan import *
from .new_tacotron2 import *
from .parallel_wavegan import *
from .speedyspeech import *
from .tacotron2 import *
from .transformer_tts import *
from .waveflow import *
from .wavernn import *
......@@ -37,35 +37,21 @@ class HiFiGANGenerator(nn.Layer):
use_weight_norm: bool=True,
init_type: str="xavier_uniform", ):
"""Initialize HiFiGANGenerator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
channels : int
Number of hidden representation channels.
kernel_size : int
Kernel size of initial and final conv layer.
upsample_scales : list
List of upsampling scales.
upsample_kernel_sizes : list
List of kernel sizes for upsampling layers.
resblock_kernel_sizes : list
List of kernel sizes for residual blocks.
resblock_dilations : list
List of dilation list for residual blocks.
use_additional_convs : bool
Whether to use additional conv layers in residual blocks.
bias : bool
Whether to add bias parameter in convolution layers.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
channels (int): Number of hidden representation channels.
kernel_size (int): Kernel size of initial and final conv layer.
upsample_scales (list): List of upsampling scales.
upsample_kernel_sizes (list): List of kernel sizes for upsampling layers.
resblock_kernel_sizes (list): List of kernel sizes for residual blocks.
resblock_dilations (list): List of dilation list for residual blocks.
use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
......@@ -134,14 +120,11 @@ class HiFiGANGenerator(nn.Layer):
def forward(self, c):
"""Calculate forward propagation.
Parameters
----------
c : Tensor
Input tensor (B, in_channels, T).
Returns
----------
Tensor
Output tensor (B, out_channels, T).
Args:
c (Tensor): Input tensor (B, in_channels, T).
Returns:
Tensor: Output tensor (B, out_channels, T).
"""
c = self.input_conv(c)
for i in range(self.num_upsamples):
......@@ -196,15 +179,12 @@ class HiFiGANGenerator(nn.Layer):
def inference(self, c):
"""Perform inference.
Parameters
----------
c : Tensor
Input tensor (T, in_channels).
normalize_before (bool): Whether to perform normalization.
Returns
----------
Tensor
Output tensor (T ** prod(upsample_scales), out_channels).
Args:
c (Tensor): Input tensor (T, in_channels).
normalize_before (bool): Whether to perform normalization.
Returns:
Tensor:
Output tensor (T ** prod(upsample_scales), out_channels).
"""
c = self.forward(c.transpose([1, 0]).unsqueeze(0))
return c.squeeze(0).transpose([1, 0])
......@@ -229,36 +209,23 @@ class HiFiGANPeriodDiscriminator(nn.Layer):
use_spectral_norm: bool=False,
init_type: str="xavier_uniform", ):
"""Initialize HiFiGANPeriodDiscriminator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
period : int
Period.
kernel_sizes : list
Kernel sizes of initial conv layers and the final conv layer.
channels : int
Number of initial channels.
downsample_scales : list
List of downsampling scales.
max_downsample_channels : int
Number of maximum downsampling channels.
use_additional_convs : bool
Whether to use additional conv layers in residual blocks.
bias : bool
Whether to add bias parameter in convolution layers.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm : bool
Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
period (int): Period.
kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer.
channels (int): Number of initial channels.
downsample_scales (list): List of downsampling scales.
max_downsample_channels (int): Number of maximum downsampling channels.
use_additional_convs (bool): Whether to use additional conv layers in residual blocks.
bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm (bool): Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
......@@ -307,14 +274,11 @@ class HiFiGANPeriodDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
c : Tensor
Input tensor (B, in_channels, T).
Returns
----------
list
List of each layer's tensors.
Args:
c (Tensor): Input tensor (B, in_channels, T).
Returns:
list: List of each layer's tensors.
"""
# transform 1d to 2d -> (B, C, T/P, P)
b, c, t = paddle.shape(x)
......@@ -379,13 +343,11 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer):
},
init_type: str="xavier_uniform", ):
"""Initialize HiFiGANMultiPeriodDiscriminator module.
Parameters
----------
periods : list
List of periods.
discriminator_params : dict
Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
Args:
periods (list): List of periods.
discriminator_params (dict): Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
"""
super().__init__()
# initialize parameters
......@@ -399,14 +361,11 @@ class HiFiGANMultiPeriodDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminators:
......@@ -434,33 +393,22 @@ class HiFiGANScaleDiscriminator(nn.Layer):
use_spectral_norm: bool=False,
init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN scale discriminator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
kernel_sizes : list
List of four kernel sizes. The first will be used for the first conv layer,
and the second is for downsampling part, and the remaining two are for output layers.
channels : int
Initial number of channels for conv layer.
max_downsample_channels : int
Maximum number of channels for downsampling layers.
bias : bool
Whether to add bias parameter in convolution layers.
downsample_scales : list
List of downsampling scales.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm : bool
Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer,
and the second is for downsampling part, and the remaining two are for output layers.
channels (int): Initial number of channels for conv layer.
max_downsample_channels (int): Maximum number of channels for downsampling layers.
bias (bool): Whether to add bias parameter in convolution layers.
downsample_scales (list): List of downsampling scales.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_spectral_norm (bool): Whether to use spectral norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
......@@ -546,14 +494,11 @@ class HiFiGANScaleDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List
List of output tensors of each layer.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of output tensors of each layer.
"""
outs = []
for f in self.layers:
......@@ -613,20 +558,14 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer):
follow_official_norm: bool=False,
init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN multi-scale discriminator module.
Parameters
----------
scales : int
Number of multi-scales.
downsample_pooling : str
Pooling module name for downsampling of the inputs.
downsample_pooling_params : dict
Parameters for the above pooling module.
discriminator_params : dict
Parameters for hifi-gan scale discriminator module.
follow_official_norm : bool
Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
Args:
scales (int): Number of multi-scales.
downsample_pooling (str): Pooling module name for downsampling of the inputs.
downsample_pooling_params (dict): Parameters for the above pooling module.
discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
follow_official_norm (bool): Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm.
"""
super().__init__()
......@@ -651,14 +590,11 @@ class HiFiGANMultiScaleDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminators:
......@@ -715,24 +651,17 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer):
},
init_type: str="xavier_uniform", ):
"""Initilize HiFiGAN multi-scale + multi-period discriminator module.
Parameters
----------
scales : int
Number of multi-scales.
scale_downsample_pooling : str
Pooling module name for downsampling of the inputs.
scale_downsample_pooling_params : dict
Parameters for the above pooling module.
scale_discriminator_params : dict
Parameters for hifi-gan scale discriminator module.
follow_official_norm : bool): Whether to follow the norm setting of the official
implementaion. The first discriminator uses spectral norm and the other
discriminators use weight norm.
periods : list
List of periods.
period_discriminator_params : dict
Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
Args:
scales (int): Number of multi-scales.
scale_downsample_pooling (str): Pooling module name for downsampling of the inputs.
scale_downsample_pooling_params (dict): Parameters for the above pooling module.
scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module.
follow_official_norm (bool): Whether to follow the norm setting of the official implementaion.
The first discriminator uses spectral norm and the other discriminators use weight norm.
periods (list): List of periods.
period_discriminator_params (dict): Parameters for hifi-gan period discriminator module.
The period parameter will be overwritten.
"""
super().__init__()
......@@ -751,16 +680,14 @@ class HiFiGANMultiScaleMultiPeriodDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List:
List of list of each discriminator outputs,
which consists of each layer output tensors.
Multi scale and multi period ones are concatenated.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List:
List of list of each discriminator outputs,
which consists of each layer output tensors.
Multi scale and multi period ones are concatenated.
"""
msd_outs = self.msd(x)
mpd_outs = self.mpd(x)
......
......@@ -51,41 +51,26 @@ class MelGANGenerator(nn.Layer):
use_causal_conv: bool=False,
init_type: str="xavier_uniform", ):
"""Initialize MelGANGenerator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels,
the number of sub-band is out_channels in multi-band melgan.
kernel_size : int
Kernel size of initial and final conv layer.
channels : int
Initial number of channels for conv layer.
bias : bool
Whether to add bias parameter in convolution layers.
upsample_scales : List[int]
List of upsampling scales.
stack_kernel_size : int
Kernel size of dilated conv layers in residual stack.
stacks : int
Number of stacks in a single residual stack.
nonlinear_activation : Optional[str], optional
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {}
pad : str
Padding function module name before dilated convolution layer.
pad_params : dict
Hyperparameters for padding function.
use_final_nonlinear_activation : nn.Layer
Activation function for the final layer.
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_causal_conv : bool
Whether to use causal convolution.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels,
the number of sub-band is out_channels in multi-band melgan.
kernel_size (int): Kernel size of initial and final conv layer.
channels (int): Initial number of channels for conv layer.
bias (bool): Whether to add bias parameter in convolution layers.
upsample_scales (List[int]): List of upsampling scales.
stack_kernel_size (int): Kernel size of dilated conv layers in residual stack.
stacks (int): Number of stacks in a single residual stack.
nonlinear_activation (Optional[str], optional): Non linear activation in upsample network, by default None
nonlinear_activation_params (Dict[str, Any], optional): Parameters passed to the linear activation in the upsample network,
by default {}
pad (str): Padding function module name before dilated convolution layer.
pad_params (dict): Hyperparameters for padding function.
use_final_nonlinear_activation (nn.Layer): Activation function for the final layer.
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
use_causal_conv (bool): Whether to use causal convolution.
"""
super().__init__()
......@@ -207,14 +192,11 @@ class MelGANGenerator(nn.Layer):
def forward(self, c):
"""Calculate forward propagation.
Parameters
----------
c : Tensor
Input tensor (B, in_channels, T).
Returns
----------
Tensor
Output tensor (B, out_channels, T ** prod(upsample_scales)).
Args:
c (Tensor): Input tensor (B, in_channels, T).
Returns:
Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)).
"""
out = self.melgan(c)
return out
......@@ -260,14 +242,11 @@ class MelGANGenerator(nn.Layer):
def inference(self, c):
"""Perform inference.
Parameters
----------
c : Union[Tensor, ndarray]
Input tensor (T, in_channels).
Returns
----------
Tensor
Output tensor (out_channels*T ** prod(upsample_scales), 1).
Args:
c (Union[Tensor, ndarray]): Input tensor (T, in_channels).
Returns:
Tensor: Output tensor (out_channels*T ** prod(upsample_scales), 1).
"""
# pseudo batch
c = c.transpose([1, 0]).unsqueeze(0)
......@@ -298,33 +277,22 @@ class MelGANDiscriminator(nn.Layer):
pad_params: Dict[str, Any]={"mode": "reflect"},
init_type: str="xavier_uniform", ):
"""Initilize MelGAN discriminator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
kernel_sizes : List[int]
List of two kernel sizes. The prod will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers.
For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15,
the last two layers' kernel size will be 5 and 3, respectively.
channels : int
Initial number of channels for conv layer.
max_downsample_channels : int
Maximum number of channels for downsampling layers.
bias : bool
Whether to add bias parameter in convolution layers.
downsample_scales : List[int]
List of downsampling scales.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
pad : str
Padding function module name before dilated convolution layer.
pad_params : dict
Hyperparameters for padding function.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
kernel_sizes (List[int]): List of two kernel sizes. The prod will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers.
For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15,
the last two layers' kernel size will be 5 and 3, respectively.
channels (int): Initial number of channels for conv layer.
max_downsample_channels (int): Maximum number of channels for downsampling layers.
bias (bool): Whether to add bias parameter in convolution layers.
downsample_scales (List[int]): List of downsampling scales.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
pad (str): Padding function module name before dilated convolution layer.
pad_params (dict): Hyperparameters for padding function.
"""
super().__init__()
......@@ -395,14 +363,10 @@ class MelGANDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List
List of output tensors of each layer (for feat_match_loss).
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of output tensors of each layer (for feat_match_loss).
"""
outs = []
for f in self.layers:
......@@ -440,39 +404,24 @@ class MelGANMultiScaleDiscriminator(nn.Layer):
use_weight_norm: bool=True,
init_type: str="xavier_uniform", ):
"""Initilize MelGAN multi-scale discriminator module.
Parameters
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
scales : int
Number of multi-scales.
downsample_pooling : str
Pooling module name for downsampling of the inputs.
downsample_pooling_params : dict
Parameters for the above pooling module.
kernel_sizes : List[int]
List of two kernel sizes. The sum will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers.
channels : int
Initial number of channels for conv layer.
max_downsample_channels : int
Maximum number of channels for downsampling layers.
bias : bool
Whether to add bias parameter in convolution layers.
downsample_scales : List[int]
List of downsampling scales.
nonlinear_activation : str
Activation function module name.
nonlinear_activation_params : dict
Hyperparameters for activation function.
pad : str
Padding function module name before dilated convolution layer.
pad_params : dict
Hyperparameters for padding function.
use_causal_conv : bool
Whether to use causal convolution.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
scales (int): Number of multi-scales.
downsample_pooling (str): Pooling module name for downsampling of the inputs.
downsample_pooling_params (dict): Parameters for the above pooling module.
kernel_sizes (List[int]): List of two kernel sizes. The sum will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers.
channels (int): Initial number of channels for conv layer.
max_downsample_channels (int): Maximum number of channels for downsampling layers.
bias (bool): Whether to add bias parameter in convolution layers.
downsample_scales (List[int]): List of downsampling scales.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
pad (str): Padding function module name before dilated convolution layer.
pad_params (dict): Hyperparameters for padding function.
use_causal_conv (bool): Whether to use causal convolution.
"""
super().__init__()
......@@ -514,14 +463,10 @@ class MelGANMultiScaleDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input noise signal (B, 1, T).
Returns
----------
List
List of list of each discriminator outputs, which consists of each layer output tensors.
Args:
x (Tensor): Input noise signal (B, 1, T).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminators:
......
......@@ -52,37 +52,23 @@ class StyleMelGANGenerator(nn.Layer):
use_weight_norm: bool=True,
init_type: str="xavier_uniform", ):
"""Initilize Style MelGAN generator.
Parameters
----------
in_channels : int
Number of input noise channels.
aux_channels : int
Number of auxiliary input channels.
channels : int
Number of channels for conv layer.
out_channels : int
Number of output channels.
kernel_size : int
Kernel size of conv layers.
dilation : int
Dilation factor for conv layers.
bias : bool
Whether to add bias parameter in convolution layers.
noise_upsample_scales : list
List of noise upsampling scales.
noise_upsample_activation : str
Activation function module name for noise upsampling.
noise_upsample_activation_params : dict
Hyperparameters for the above activation function.
upsample_scales : list
List of upsampling scales.
upsample_mode : str
Upsampling mode in TADE layer.
gated_function : str
Gated function in TADEResBlock ("softmax" or "sigmoid").
use_weight_norm : bool
Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
Args:
in_channels (int): Number of input noise channels.
aux_channels (int): Number of auxiliary input channels.
channels (int): Number of channels for conv layer.
out_channels (int): Number of output channels.
kernel_size (int): Kernel size of conv layers.
dilation (int): Dilation factor for conv layers.
bias (bool): Whether to add bias parameter in convolution layers.
noise_upsample_scales (list): List of noise upsampling scales.
noise_upsample_activation (str): Activation function module name for noise upsampling.
noise_upsample_activation_params (dict): Hyperparameters for the above activation function.
upsample_scales (list): List of upsampling scales.
upsample_mode (str): Upsampling mode in TADE layer.
gated_function (str): Gated function in TADEResBlock ("softmax" or "sigmoid").
use_weight_norm (bool): Whether to use weight norm.
If set to true, it will be applied to all of the conv layers.
"""
super().__init__()
......@@ -147,16 +133,12 @@ class StyleMelGANGenerator(nn.Layer):
def forward(self, c, z=None):
"""Calculate forward propagation.
Parameters
----------
c : Tensor
Auxiliary input tensor (B, channels, T).
z : Tensor
Input noise tensor (B, in_channels, 1).
Returns
----------
Tensor
Output tensor (B, out_channels, T ** prod(upsample_scales)).
Args:
c (Tensor): Auxiliary input tensor (B, channels, T).
z (Tensor): Input noise tensor (B, in_channels, 1).
Returns:
Tensor: Output tensor (B, out_channels, T ** prod(upsample_scales)).
"""
# batch_max_steps(24000) == noise_upsample_factor(80) * upsample_factor(300)
if z is None:
......@@ -211,14 +193,10 @@ class StyleMelGANGenerator(nn.Layer):
def inference(self, c):
"""Perform inference.
Parameters
----------
c : Tensor
Input tensor (T, in_channels).
Returns
----------
Tensor
Output tensor (T ** prod(upsample_scales), out_channels).
Args:
c (Tensor): Input tensor (T, in_channels).
Returns:
Tensor: Output tensor (T ** prod(upsample_scales), out_channels).
"""
# (1, in_channels, T)
c = c.transpose([1, 0]).unsqueeze(0)
......@@ -278,18 +256,13 @@ class StyleMelGANDiscriminator(nn.Layer):
use_weight_norm: bool=True,
init_type: str="xavier_uniform", ):
"""Initilize Style MelGAN discriminator.
Parameters
----------
repeats : int
Number of repititons to apply RWD.
window_sizes : list
List of random window sizes.
pqmf_params : list
List of list of Parameters for PQMF modules
discriminator_params : dict
Parameters for base discriminator module.
use_weight_nom : bool
Whether to apply weight normalization.
Args:
repeats (int): Number of repititons to apply RWD.
window_sizes (list): List of random window sizes.
pqmf_params (list): List of list of Parameters for PQMF modules
discriminator_params (dict): Parameters for base discriminator module.
use_weight_nom (bool): Whether to apply weight normalization.
"""
super().__init__()
......@@ -325,15 +298,11 @@ class StyleMelGANDiscriminator(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input tensor (B, 1, T).
Returns
----------
List
List of discriminator outputs, #items in the list will be
equal to repeats * #discriminators.
Args:
x (Tensor): Input tensor (B, 1, T).
Returns:
List: List of discriminator outputs, #items in the list will be
equal to repeats * #discriminators.
"""
outs = []
for _ in range(self.repeats):
......
......@@ -31,51 +31,30 @@ from paddlespeech.t2s.modules.upsample import ConvInUpsampleNet
class PWGGenerator(nn.Layer):
"""Wave Generator for Parallel WaveGAN
Parameters
----------
in_channels : int, optional
Number of channels of the input waveform, by default 1
out_channels : int, optional
Number of channels of the output waveform, by default 1
kernel_size : int, optional
Kernel size of the residual blocks inside, by default 3
layers : int, optional
Number of residual blocks inside, by default 30
stacks : int, optional
The number of groups to split the residual blocks into, by default 3
Within each group, the dilation of the residual block grows
exponentially.
residual_channels : int, optional
Residual channel of the residual blocks, by default 64
gate_channels : int, optional
Gate channel of the residual blocks, by default 128
skip_channels : int, optional
Skip channel of the residual blocks, by default 64
aux_channels : int, optional
Auxiliary channel of the residual blocks, by default 80
aux_context_window : int, optional
The context window size of the first convolution applied to the
auxiliary input, by default 2
dropout : float, optional
Dropout of the residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight norm in all convolutions, by default True
use_causal_conv : bool, optional
Whether to use causal padding in the upsample network and residual
blocks, by default False
upsample_scales : List[int], optional
Upsample scales of the upsample network, by default [4, 4, 4, 4]
nonlinear_activation : Optional[str], optional
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {}
interpolate_mode : str, optional
Interpolation mode of the upsample network, by default "nearest"
freq_axis_kernel_size : int, optional
Kernel size along the frequency axis of the upsample network, by default 1
Args:
in_channels (int, optional): Number of channels of the input waveform, by default 1
out_channels (int, optional): Number of channels of the output waveform, by default 1
kernel_size (int, optional): Kernel size of the residual blocks inside, by default 3
layers (int, optional): Number of residual blocks inside, by default 30
stacks (int, optional): The number of groups to split the residual blocks into, by default 3
Within each group, the dilation of the residual block grows exponentially.
residual_channels (int, optional): Residual channel of the residual blocks, by default 64
gate_channels (int, optional): Gate channel of the residual blocks, by default 128
skip_channels (int, optional): Skip channel of the residual blocks, by default 64
aux_channels (int, optional): Auxiliary channel of the residual blocks, by default 80
aux_context_window (int, optional): The context window size of the first convolution applied to the
auxiliary input, by default 2
dropout (float, optional): Dropout of the residual blocks, by default 0.
bias (bool, optional): Whether to use bias in residual blocks, by default True
use_weight_norm (bool, optional): Whether to use weight norm in all convolutions, by default True
use_causal_conv (bool, optional): Whether to use causal padding in the upsample network and residual
blocks, by default False
upsample_scales (List[int], optional): Upsample scales of the upsample network, by default [4, 4, 4, 4]
nonlinear_activation (Optional[str], optional): Non linear activation in upsample network, by default None
nonlinear_activation_params (Dict[str, Any], optional): Parameters passed to the linear activation in the upsample network,
by default {}
interpolate_mode (str, optional): Interpolation mode of the upsample network, by default "nearest"
freq_axis_kernel_size (int, optional): Kernel size along the frequency axis of the upsample network, by default 1
"""
def __init__(
......@@ -167,18 +146,13 @@ class PWGGenerator(nn.Layer):
def forward(self, x, c):
"""Generate waveform.
Parameters
----------
x : Tensor
Shape (N, C_in, T), The input waveform.
c : Tensor
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
Args:
x(Tensor): Shape (N, C_in, T), The input waveform.
c(Tensor): Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
is upsampled to match the time resolution of the input.
Returns
-------
Tensor
Shape (N, C_out, T), the generated waveform.
Returns:
Tensor: Shape (N, C_out, T), the generated waveform.
"""
c = self.upsample_net(c)
assert c.shape[-1] == x.shape[-1]
......@@ -218,19 +192,14 @@ class PWGGenerator(nn.Layer):
self.apply(_remove_weight_norm)
def inference(self, c=None):
"""Waveform generation. This function is used for single instance
inference.
Parameters
----------
c : Tensor, optional
Shape (T', C_aux), the auxiliary input, by default None
x : Tensor, optional
Shape (T, C_in), the noise waveform, by default None
If not provided, a sample is drawn from a gaussian distribution.
Returns
-------
Tensor
Shape (T, C_out), the generated waveform
"""Waveform generation. This function is used for single instance inference.
Args:
c(Tensor, optional, optional): Shape (T', C_aux), the auxiliary input, by default None
x(Tensor, optional): Shape (T, C_in), the noise waveform, by default None
Returns:
Tensor: Shape (T, C_out), the generated waveform
"""
# when to static, can not input x, see https://github.com/PaddlePaddle/Parakeet/pull/132/files
x = paddle.randn(
......@@ -244,32 +213,21 @@ class PWGGenerator(nn.Layer):
class PWGDiscriminator(nn.Layer):
"""A convolutional discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of convolutional sublayers, by default 3
layers : int, optional
Number of layers, by default 10
conv_channels : int, optional
Feature size of the convolutional sublayers, by default 64
dilation_factor : int, optional
The factor with which dilation of each convolutional sublayers grows
exponentially if it is greater than 1, else the dilation of each
convolutional sublayers grows linearly, by default 1
nonlinear_activation : str, optional
The activation after each convolutional sublayer, by default "leakyrelu"
nonlinear_activation_params : Dict[str, Any], optional
The parameters passed to the activation's initializer, by default
{"negative_slope": 0.2}
bias : bool, optional
Whether to use bias in convolutional sublayers, by default True
use_weight_norm : bool, optional
Whether to use weight normalization at all convolutional sublayers,
by default True
Args:
in_channels (int, optional): Number of channels of the input audio, by default 1
out_channels (int, optional): Output feature size, by default 1
kernel_size (int, optional): Kernel size of convolutional sublayers, by default 3
layers (int, optional): Number of layers, by default 10
conv_channels (int, optional): Feature size of the convolutional sublayers, by default 64
dilation_factor (int, optional): The factor with which dilation of each convolutional sublayers grows
exponentially if it is greater than 1, else the dilation of each convolutional sublayers grows linearly,
by default 1
nonlinear_activation (str, optional): The activation after each convolutional sublayer, by default "leakyrelu"
nonlinear_activation_params (Dict[str, Any], optional): The parameters passed to the activation's initializer, by default
{"negative_slope": 0.2}
bias (bool, optional): Whether to use bias in convolutional sublayers, by default True
use_weight_norm (bool, optional): Whether to use weight normalization at all convolutional sublayers,
by default True
"""
def __init__(
......@@ -330,15 +288,12 @@ class PWGDiscriminator(nn.Layer):
def forward(self, x):
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
Args:
x (Tensor): Shape (N, in_channels, num_samples), the input audio.
Returns:
Tensor: Shape (N, out_channels, num_samples), the predicted logits.
"""
return self.conv_layers(x)
......@@ -362,39 +317,25 @@ class PWGDiscriminator(nn.Layer):
class ResidualPWGDiscriminator(nn.Layer):
"""A wavenet-style discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of residual blocks, by default 3
layers : int, optional
Number of residual blocks, by default 30
stacks : int, optional
Number of groups of residual blocks, within which the dilation
of each residual blocks grows exponentially, by default 3
residual_channels : int, optional
Residual channels of residual blocks, by default 64
gate_channels : int, optional
Gate channels of residual blocks, by default 128
skip_channels : int, optional
Skip channels of residual blocks, by default 64
dropout : float, optional
Dropout probability of residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight normalization in all convolutional layers,
by default True
use_causal_conv : bool, optional
Whether to use causal convolution in residual blocks, by default False
nonlinear_activation : str, optional
Activation after convolutions other than those in residual blocks,
by default "leakyrelu"
nonlinear_activation_params : Dict[str, Any], optional
Parameters to pass to the activation, by default {"negative_slope": 0.2}
Args:
in_channels (int, optional): Number of channels of the input audio, by default 1
out_channels (int, optional): Output feature size, by default 1
kernel_size (int, optional): Kernel size of residual blocks, by default 3
layers (int, optional): Number of residual blocks, by default 30
stacks (int, optional): Number of groups of residual blocks, within which the dilation
of each residual blocks grows exponentially, by default 3
residual_channels (int, optional): Residual channels of residual blocks, by default 64
gate_channels (int, optional): Gate channels of residual blocks, by default 128
skip_channels (int, optional): Skip channels of residual blocks, by default 64
dropout (float, optional): Dropout probability of residual blocks, by default 0.
bias (bool, optional): Whether to use bias in residual blocks, by default True
use_weight_norm (bool, optional): Whether to use weight normalization in all convolutional layers,
by default True
use_causal_conv (bool, optional): Whether to use causal convolution in residual blocks, by default False
nonlinear_activation (str, optional): Activation after convolutions other than those in residual blocks,
by default "leakyrelu"
nonlinear_activation_params (Dict[str, Any], optional): Parameters to pass to the activation,
by default {"negative_slope": 0.2}
"""
def __init__(
......@@ -463,15 +404,11 @@ class ResidualPWGDiscriminator(nn.Layer):
def forward(self, x):
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
Args:
x(Tensor): Shape (N, in_channels, num_samples), the input audio.↩
Returns:
Tensor: Shape (N, out_channels, num_samples), the predicted logits.
"""
x = self.first_conv(x)
skip = 0
......
......@@ -81,69 +81,39 @@ class Tacotron2(nn.Layer):
# training related
init_type: str="xavier_uniform", ):
"""Initialize Tacotron2 module.
Parameters
----------
idim : int
Dimension of the inputs.
odim : int
Dimension of the outputs.
embed_dim : int
Dimension of the token embedding.
elayers : int
Number of encoder blstm layers.
eunits : int
Number of encoder blstm units.
econv_layers : int
Number of encoder conv layers.
econv_filts : int
Number of encoder conv filter size.
econv_chans : int
Number of encoder conv filter channels.
dlayers : int
Number of decoder lstm layers.
dunits : int
Number of decoder lstm units.
prenet_layers : int
Number of prenet layers.
prenet_units : int
Number of prenet units.
postnet_layers : int
Number of postnet layers.
postnet_filts : int
Number of postnet filter size.
postnet_chans : int
Number of postnet filter channels.
output_activation : str
Name of activation function for outputs.
adim : int
Number of dimension of mlp in attention.
aconv_chans : int
Number of attention conv filter channels.
aconv_filts : int
Number of attention conv filter size.
cumulate_att_w : bool
Whether to cumulate previous attention weight.
use_batch_norm : bool
Whether to use batch normalization.
use_concate : bool
Whether to concat enc outputs w/ dec lstm outputs.
reduction_factor : int
Reduction factor.
spk_num : Optional[int]
Number of speakers. If set to > 1, assume that the
sids will be provided as the input and use sid embedding layer.
lang_num : Optional[int]
Number of languages. If set to > 1, assume that the
lids will be provided as the input and use sid embedding layer.
spk_embed_dim : Optional[int]
Speaker embedding dimension. If set to > 0,
assume that spk_emb will be provided as the input.
spk_embed_integration_type : str
How to integrate speaker embedding.
dropout_rate : float
Dropout rate.
zoneout_rate : float
Zoneout rate.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
embed_dim (int): Dimension of the token embedding.
elayers (int): Number of encoder blstm layers.
eunits (int): Number of encoder blstm units.
econv_layers (int): Number of encoder conv layers.
econv_filts (int): Number of encoder conv filter size.
econv_chans (int): Number of encoder conv filter channels.
dlayers (int): Number of decoder lstm layers.
dunits (int): Number of decoder lstm units.
prenet_layers (int): Number of prenet layers.
prenet_units (int): Number of prenet units.
postnet_layers (int): Number of postnet layers.
postnet_filts (int): Number of postnet filter size.
postnet_chans (int): Number of postnet filter channels.
output_activation (str): Name of activation function for outputs.
adim (int): Number of dimension of mlp in attention.
aconv_chans (int): Number of attention conv filter channels.
aconv_filts (int): Number of attention conv filter size.
cumulate_att_w (bool): Whether to cumulate previous attention weight.
use_batch_norm (bool): Whether to use batch normalization.
use_concate (bool): Whether to concat enc outputs w/ dec lstm outputs.
reduction_factor (int): Reduction factor.
spk_num (Optional[int]): Number of speakers. If set to > 1, assume that the
sids will be provided as the input and use sid embedding layer.
lang_num (Optional[int]): Number of languages. If set to > 1, assume that the
lids will be provided as the input and use sid embedding layer.
spk_embed_dim (Optional[int]): Speaker embedding dimension. If set to > 0,
assume that spk_emb will be provided as the input.
spk_embed_integration_type (str): How to integrate speaker embedding.
dropout_rate (float): Dropout rate.
zoneout_rate (float): Zoneout rate.
"""
assert check_argument_types()
super().__init__()
......@@ -258,31 +228,19 @@ class Tacotron2(nn.Layer):
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation.
Parameters
----------
text : Tensor(int64)
Batch of padded character ids (B, T_text).
text_lengths : Tensor(int64)
Batch of lengths of each input batch (B,).
speech : Tensor
Batch of padded target features (B, T_feats, odim).
speech_lengths : Tensor(int64)
Batch of the lengths of each target (B,).
spk_emb : Optional[Tensor]
Batch of speaker embeddings (B, spk_embed_dim).
spk_id : Optional[Tensor]
Batch of speaker IDs (B, 1).
lang_id : Optional[Tensor]
Batch of language IDs (B, 1).
Returns
----------
Tensor
Loss scalar value.
Dict
Statistics to be monitored.
Tensor
Weight value if not joint training else model outputs.
Args:
text (Tensor(int64)): Batch of padded character ids (B, T_text).
text_lengths (Tensor(int64)): Batch of lengths of each input batch (B,).
speech (Tensor): Batch of padded target features (B, T_feats, odim).
speech_lengths (Tensor(int64)): Batch of the lengths of each target (B,).
spk_emb (Optional[Tensor]): Batch of speaker embeddings (B, spk_embed_dim).
spk_id (Optional[Tensor]): Batch of speaker IDs (B, 1).
lang_id (Optional[Tensor]): Batch of language IDs (B, 1).
Returns:
Tensor: Loss scalar value.
Dict: Statistics to be monitored.
Tensor: Weight value if not joint training else model outputs.
"""
text = text[:, :text_lengths.max()]
......@@ -369,40 +327,26 @@ class Tacotron2(nn.Layer):
use_teacher_forcing: bool=False, ) -> Dict[str, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Parameters
----------
text Tensor(int64)
Input sequence of characters (T_text,).
speech : Optional[Tensor]
Feature sequence to extract style (N, idim).
spk_emb : ptional[Tensor]
Speaker embedding (spk_embed_dim,).
spk_id : Optional[Tensor]
Speaker ID (1,).
lang_id : Optional[Tensor]
Language ID (1,).
threshold : float
Threshold in inference.
minlenratio : float
Minimum length ratio in inference.
maxlenratio : float
Maximum length ratio in inference.
use_att_constraint : bool
Whether to apply attention constraint.
backward_window : int
Backward window in attention constraint.
forward_window : int
Forward window in attention constraint.
use_teacher_forcing : bool
Whether to use teacher forcing.
Return
----------
Dict[str, Tensor]
Output dict including the following items:
* feat_gen (Tensor): Output sequence of features (T_feats, odim).
* prob (Tensor): Output sequence of stop probabilities (T_feats,).
* att_w (Tensor): Attention weights (T_feats, T).
Args:
text (Tensor(int64)): Input sequence of characters (T_text,).
speech (Optional[Tensor]): Feature sequence to extract style (N, idim).
spk_emb (ptional[Tensor]): Speaker embedding (spk_embed_dim,).
spk_id (Optional[Tensor]): Speaker ID (1,).
lang_id (Optional[Tensor]): Language ID (1,).
threshold (float): Threshold in inference.
minlenratio (float): Minimum length ratio in inference.
maxlenratio (float): Maximum length ratio in inference.
use_att_constraint (bool): Whether to apply attention constraint.
backward_window (int): Backward window in attention constraint.
forward_window (int): Forward window in attention constraint.
use_teacher_forcing (bool): Whether to use teacher forcing.
Returns:
Dict[str, Tensor]
Output dict including the following items:
* feat_gen (Tensor): Output sequence of features (T_feats, odim).
* prob (Tensor): Output sequence of stop probabilities (T_feats,).
* att_w (Tensor): Attention weights (T_feats, T).
"""
x = text
......@@ -458,18 +402,13 @@ class Tacotron2(nn.Layer):
spk_emb: paddle.Tensor) -> paddle.Tensor:
"""Integrate speaker embedding with hidden states.
Parameters
----------
hs : Tensor
Batch of hidden state sequences (B, Tmax, eunits).
spk_emb : Tensor
Batch of speaker embeddings (B, spk_embed_dim).
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, eunits) if
integration_type is "add" else (B, Tmax, eunits + spk_embed_dim).
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, eunits).
spk_emb (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, eunits) if
integration_type is "add" else (B, Tmax, eunits + spk_embed_dim).
"""
if self.spk_embed_integration_type == "add":
......
......@@ -48,127 +48,67 @@ class TransformerTTS(nn.Layer):
.. _`Neural Speech Synthesis with Transformer Network`:
https://arxiv.org/pdf/1809.08895.pdf
Parameters
----------
idim : int
Dimension of the inputs.
odim : int
Dimension of the outputs.
embed_dim : int, optional
Dimension of character embedding.
eprenet_conv_layers : int, optional
Number of encoder prenet convolution layers.
eprenet_conv_chans : int, optional
Number of encoder prenet convolution channels.
eprenet_conv_filts : int, optional
Filter size of encoder prenet convolution.
dprenet_layers : int, optional
Number of decoder prenet layers.
dprenet_units : int, optional
Number of decoder prenet hidden units.
elayers : int, optional
Number of encoder layers.
eunits : int, optional
Number of encoder hidden units.
adim : int, optional
Number of attention transformation dimensions.
aheads : int, optional
Number of heads for multi head attention.
dlayers : int, optional
Number of decoder layers.
dunits : int, optional
Number of decoder hidden units.
postnet_layers : int, optional
Number of postnet layers.
postnet_chans : int, optional
Number of postnet channels.
postnet_filts : int, optional
Filter size of postnet.
use_scaled_pos_enc : pool, optional
Whether to use trainable scaled positional encoding.
use_batch_norm : bool, optional
Whether to use batch normalization in encoder prenet.
encoder_normalize_before : bool, optional
Whether to perform layer normalization before encoder block.
decoder_normalize_before : bool, optional
Whether to perform layer normalization before decoder block.
encoder_concat_after : bool, optional
Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after : bool, optional
Whether to concatenate attention layer's input and output in decoder.
positionwise_layer_type : str, optional
Position-wise operation type.
positionwise_conv_kernel_size : int, optional
Kernel size in position wise conv 1d.
reduction_factor : int, optional
Reduction factor.
spk_embed_dim : int, optional
Number of speaker embedding dimenstions.
spk_embed_integration_type : str, optional
How to integrate speaker embedding.
use_gst : str, optional
Whether to use global style token.
gst_tokens : int, optional
The number of GST embeddings.
gst_heads : int, optional
The number of heads in GST multihead attention.
gst_conv_layers : int, optional
The number of conv layers in GST.
gst_conv_chans_list : Sequence[int], optional
List of the number of channels of conv layers in GST.
gst_conv_kernel_size : int, optional
Kernal size of conv layers in GST.
gst_conv_stride : int, optional
Stride size of conv layers in GST.
gst_gru_layers : int, optional
The number of GRU layers in GST.
gst_gru_units : int, optional
The number of GRU units in GST.
transformer_lr : float, optional
Initial value of learning rate.
transformer_warmup_steps : int, optional
Optimizer warmup steps.
transformer_enc_dropout_rate : float, optional
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate : float, optional
Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate : float, optional
Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate : float, optional
Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate : float, optional
Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate : float, optional
Dropout rate in deocoder self-attention module.
transformer_enc_dec_attn_dropout_rate : float, optional
Dropout rate in encoder-deocoder attention module.
init_type : str, optional
How to initialize transformer parameters.
init_enc_alpha : float, optional
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha : float, optional
Initial value of alpha in scaled pos encoding of the decoder.
eprenet_dropout_rate : float, optional
Dropout rate in encoder prenet.
dprenet_dropout_rate : float, optional
Dropout rate in decoder prenet.
postnet_dropout_rate : float, optional
Dropout rate in postnet.
use_masking : bool, optional
Whether to apply masking for padded part in loss calculation.
use_weighted_masking : bool, optional
Whether to apply weighted masking in loss calculation.
bce_pos_weight : float, optional
Positive sample weight in bce calculation (only for use_masking=true).
loss_type : str, optional
How to calculate loss.
use_guided_attn_loss : bool, optional
Whether to use guided attention loss.
num_heads_applied_guided_attn : int, optional
Number of heads in each layer to apply guided attention loss.
num_layers_applied_guided_attn : int, optional
Number of layers to apply guided attention loss.
List of module names to apply guided attention loss.
Args:
idim (int): Dimension of the inputs.
odim (int): Dimension of the outputs.
embed_dim (int, optional): Dimension of character embedding.
eprenet_conv_layers (int, optional): Number of encoder prenet convolution layers.
eprenet_conv_chans (int, optional): Number of encoder prenet convolution channels.
eprenet_conv_filts (int, optional): Filter size of encoder prenet convolution.
dprenet_layers (int, optional): Number of decoder prenet layers.
dprenet_units (int, optional): Number of decoder prenet hidden units.
elayers (int, optional): Number of encoder layers.
eunits (int, optional): Number of encoder hidden units.
adim (int, optional): Number of attention transformation dimensions.
aheads (int, optional): Number of heads for multi head attention.
dlayers (int, optional): Number of decoder layers.
dunits (int, optional): Number of decoder hidden units.
postnet_layers (int, optional): Number of postnet layers.
postnet_chans (int, optional): Number of postnet channels.
postnet_filts (int, optional): Filter size of postnet.
use_scaled_pos_enc (pool, optional): Whether to use trainable scaled positional encoding.
use_batch_norm (bool, optional): Whether to use batch normalization in encoder prenet.
encoder_normalize_before (bool, optional): Whether to perform layer normalization before encoder block.
decoder_normalize_before (bool, optional): Whether to perform layer normalization before decoder block.
encoder_concat_after (bool, optional): Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after (bool, optional): Whether to concatenate attention layer's input and output in decoder.
positionwise_layer_type (str, optional): Position-wise operation type.
positionwise_conv_kernel_size (int, optional): Kernel size in position wise conv 1d.
reduction_factor (int, optional): Reduction factor.
spk_embed_dim (int, optional): Number of speaker embedding dimenstions.
spk_embed_integration_type (str, optional): How to integrate speaker embedding.
use_gst (str, optional): Whether to use global style token.
gst_tokens (int, optional): The number of GST embeddings.
gst_heads (int, optional): The number of heads in GST multihead attention.
gst_conv_layers (int, optional): The number of conv layers in GST.
gst_conv_chans_list (Sequence[int], optional): List of the number of channels of conv layers in GST.
gst_conv_kernel_size (int, optional): Kernal size of conv layers in GST.
gst_conv_stride (int, optional): Stride size of conv layers in GST.
gst_gru_layers (int, optional): The number of GRU layers in GST.
gst_gru_units (int, optional): The number of GRU units in GST.
transformer_lr (float, optional): Initial value of learning rate.
transformer_warmup_steps (int, optional): Optimizer warmup steps.
transformer_enc_dropout_rate (float, optional): Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate (float, optional): Dropout rate after encoder positional encoding.
transformer_enc_attn_dropout_rate (float, optional): Dropout rate in encoder self-attention module.
transformer_dec_dropout_rate (float, optional): Dropout rate in decoder except attention & positional encoding.
transformer_dec_positional_dropout_rate (float, optional): Dropout rate after decoder positional encoding.
transformer_dec_attn_dropout_rate (float, optional): Dropout rate in deocoder self-attention module.
transformer_enc_dec_attn_dropout_rate (float, optional): Dropout rate in encoder-deocoder attention module.
init_type (str, optional): How to initialize transformer parameters.
init_enc_alpha (float, optional): Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha (float, optional): Initial value of alpha in scaled pos encoding of the decoder.
eprenet_dropout_rate (float, optional): Dropout rate in encoder prenet.
dprenet_dropout_rate (float, optional): Dropout rate in decoder prenet.
postnet_dropout_rate (float, optional): Dropout rate in postnet.
use_masking (bool, optional): Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool, optional): Whether to apply weighted masking in loss calculation.
bce_pos_weight (float, optional): Positive sample weight in bce calculation (only for use_masking=true).
loss_type (str, optional): How to calculate loss.
use_guided_attn_loss (bool, optional): Whether to use guided attention loss.
num_heads_applied_guided_attn (int, optional): Number of heads in each layer to apply guided attention loss.
num_layers_applied_guided_attn (int, optional): Number of layers to apply guided attention loss.
List of module names to apply guided attention loss.
"""
def __init__(
......@@ -398,25 +338,16 @@ class TransformerTTS(nn.Layer):
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
"""Calculate forward propagation.
Parameters
----------
text : Tensor(int64)
Batch of padded character ids (B, Tmax).
text_lengths : Tensor(int64)
Batch of lengths of each input batch (B,).
speech : Tensor
Batch of padded target features (B, Lmax, odim).
speech_lengths : Tensor(int64)
Batch of the lengths of each target (B,).
spk_emb : Tensor, optional
Batch of speaker embeddings (B, spk_embed_dim).
Returns
----------
Tensor
Loss scalar value.
Dict
Statistics to be monitored.
Args:
text(Tensor(int64)): Batch of padded character ids (B, Tmax).
text_lengths(Tensor(int64)): Batch of lengths of each input batch (B,).
speech(Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths(Tensor(int64)): Batch of the lengths of each target (B,).
spk_emb(Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Loss scalar value.
Dict: Statistics to be monitored.
"""
# input of embedding must be int64
......@@ -525,31 +456,19 @@ class TransformerTTS(nn.Layer):
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Parameters
----------
text : Tensor(int64)
Input sequence of characters (T,).
speech : Tensor, optional
Feature sequence to extract style (N, idim).
spk_emb : Tensor, optional
Speaker embedding vector (spk_embed_dim,).
threshold : float, optional
Threshold in inference.
minlenratio : float, optional
Minimum length ratio in inference.
maxlenratio : float, optional
Maximum length ratio in inference.
use_teacher_forcing : bool, optional
Whether to use teacher forcing.
Returns
----------
Tensor
Output sequence of features (L, odim).
Tensor
Output sequence of stop probabilities (L,).
Tensor
Encoder-decoder (source) attention weights (#layers, #heads, L, T).
Args:
text(Tensor(int64)): Input sequence of characters (T,).
speech(Tensor, optional): Feature sequence to extract style (N, idim).
spk_emb(Tensor, optional): Speaker embedding vector (spk_embed_dim,).
threshold(float, optional): Threshold in inference.
minlenratio(float, optional): Minimum length ratio in inference.
maxlenratio(float, optional): Maximum length ratio in inference.
use_teacher_forcing(bool, optional): Whether to use teacher forcing.
Returns:
Tensor: Output sequence of features (L, odim).
Tensor: Output sequence of stop probabilities (L,).
Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).
"""
# input of embedding must be int64
......@@ -671,23 +590,17 @@ class TransformerTTS(nn.Layer):
def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for self-attention.
Parameters
----------
ilens : Tensor
Batch of lengths (B,).
Args:
ilens(Tensor): Batch of lengths (B,).
Returns
-------
Tensor
Mask tensor for self-attention.
dtype=paddle.bool
Returns:
Tensor: Mask tensor for self-attention. dtype=paddle.bool
Examples
-------
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]]) bool
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]]) bool
"""
x_masks = make_non_pad_mask(ilens)
......@@ -696,30 +609,25 @@ class TransformerTTS(nn.Layer):
def _target_mask(self, olens: paddle.Tensor) -> paddle.Tensor:
"""Make masks for masked self-attention.
Parameters
----------
olens : LongTensor
Batch of lengths (B,).
Returns
----------
Tensor
Mask tensor for masked self-attention.
Examples
----------
>>> olens = [5, 3]
>>> self._target_mask(olens)
tensor([[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]],
[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0]]], dtype=paddle.uint8)
Args:
olens (Tensor(int64)): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for masked self-attention.
Examples:
>>> olens = [5, 3]
>>> self._target_mask(olens)
tensor([[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]],
[[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0],
[1, 1, 1, 0, 0]]], dtype=paddle.uint8)
"""
y_masks = make_non_pad_mask(olens)
......@@ -731,17 +639,12 @@ class TransformerTTS(nn.Layer):
spk_emb: paddle.Tensor) -> paddle.Tensor:
"""Integrate speaker embedding with hidden states.
Parameters
----------
hs : Tensor
Batch of hidden state sequences (B, Tmax, adim).
spk_emb : Tensor
Batch of speaker embeddings (B, spk_embed_dim).
Returns
----------
Tensor
Batch of integrated hidden state sequences (B, Tmax, adim).
Args:
hs(Tensor): Batch of hidden state sequences (B, Tmax, adim).
spk_emb(Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
"""
if self.spk_embed_integration_type == "add":
......
此差异已折叠。
......@@ -41,14 +41,10 @@ class CausalConv1D(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input tensor (B, in_channels, T).
Returns
----------
Tensor
Output tensor (B, out_channels, T).
Args:
x (Tensor): Input tensor (B, in_channels, T).
Returns:
Tensor: Output tensor (B, out_channels, T).
"""
return self.conv(self.pad(x))[:, :, :x.shape[2]]
......@@ -70,13 +66,9 @@ class CausalConv1DTranspose(nn.Layer):
def forward(self, x):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Input tensor (B, in_channels, T_in).
Returns
----------
Tensor
Output tensor (B, out_channels, T_out).
Args:
x (Tensor): Input tensor (B, in_channels, T_in).
Returns:
Tensor: Output tensor (B, out_channels, T_out).
"""
return self.deconv(x)[:, :, :-self.stride]
......@@ -18,12 +18,10 @@ from paddle import nn
class ConvolutionModule(nn.Layer):
"""ConvolutionModule in Conformer model.
Parameters
----------
channels : int
The number of channels of conv layers.
kernel_size : int
Kernerl size of conv layers.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
......@@ -59,14 +57,11 @@ class ConvolutionModule(nn.Layer):
def forward(self, x):
"""Compute convolution module.
Parameters
----------
x : paddle.Tensor
Input tensor (#batch, time, channels).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, channels).
Args:
x (Tensor): Input tensor (#batch, time, channels).
Returns:
Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose([0, 2, 1])
......
......@@ -21,38 +21,29 @@ from paddlespeech.t2s.modules.layer_norm import LayerNorm
class EncoderLayer(nn.Layer):
"""Encoder layer module.
Parameters
----------
size : int
Input dimension.
self_attn : nn.Layer
Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward : nn.Layer
Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron : nn.Layer
Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module : nn.Layer
Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate : float
Dropout rate.
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate : float
Proability to skip this layer.
During training, the layer may skip residual computation and return input
as-is with given probability.
Args:
size (int): Input dimension.
self_attn (nn.Layer): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward (nn.Layer): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron (nn.Layer): Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module (nn.Layer): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate (float): Proability to skip this layer.
During training, the layer may skip residual computation and return input
as-is with given probability.
"""
def __init__(
......@@ -93,22 +84,17 @@ class EncoderLayer(nn.Layer):
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Parameters
----------
x_input : Union[Tuple, paddle.Tensor]
Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask : paddle.Tensor
Mask tensor for the input (#batch, time).
cache paddle.Tensor
Cache tensor of the input (#batch, time - 1, size).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, size).
paddle.Tensor
Mask tensor (#batch, time).
Args:
x_input(Union[Tuple, Tensor]): Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask(Tensor): Mask tensor for the input (#batch, time).
cache (Tensor):
Returns:
Tensor: Output tensor (#batch, time, size).
Tensor: Mask tensor (#batch, time).
"""
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册