提交 5187df84 编写于 作者: L lym0302

modify server demo, test=doc

上级 89bc3ba4
......@@ -182,6 +182,52 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
### 6. CLS Client Usage
**Note:** The response time will be slightly longer when using the client for the first time
- Command Line (Recommended)
```
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
Usage:
```bash
paddlespeech_client cls --help
```
Arguments:
- `server_ip`: server ip. Default: 127.0.0.1
- `port`: server port. Default: 8090
- `input`(required): Audio file to be classified.
- `topk`: topk scores of classification result.
Output:
```bash
[2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
[2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
clsclient_executor = CLSClientExecutor()
clsclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
topk=1)
```
Output:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
Response time 0.150897 s.
```
## Models supported by the service
### ASR model
......@@ -189,3 +235,6 @@ Get all models supported by the ASR service via `paddlespeech_server stats --tas
### TTS model
Get all models supported by the TTS service via `paddlespeech_server stats --task tts`, where static models can be used for paddle inference inference.
### CLS model
Get all models supported by the CLS service via `paddlespeech_server stats --task cls`, where static models can be used for paddle inference inference.
......@@ -80,7 +80,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
### 4. ASR客户端使用方法
### 4. ASR 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
......@@ -129,7 +129,7 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
### 5. TTS客户端使用方法
### 5. TTS 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
......@@ -185,9 +185,59 @@ wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespee
```
### 5. CLS 客户端使用方法
**注意:** 初次使用客户端时响应时间会略长
- 命令行 (推荐使用)
```
paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
```
使用帮助:
```bash
paddlespeech_client cls --help
```
参数:
- `server_ip`: 服务端ip地址,默认: 127.0.0.1。
- `port`: 服务端口,默认: 8090。
- `input`(必须输入): 用于分类的音频文件。
- `topk`: 分类结果的topk。
输出:
```bash
[2022-03-09 20:44:39,974] [ INFO] - {'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
[2022-03-09 20:44:39,975] [ INFO] - Response time 0.104360 s.
```
- Python API
```python
from paddlespeech.server.bin.paddlespeech_client import CLSClientExecutor
clsclient_executor = CLSClientExecutor()
clsclient_executor(
input="./zh.wav",
server_ip="127.0.0.1",
port=8090,
topk=1)
```
输出:
```bash
{'success': True, 'code': 200, 'message': {'description': 'success'}, 'result': {'topk': 1, 'results': [{'class_name': 'Speech', 'prob': 0.9027184844017029}]}}
Response time 0.150897 s.
```
## 服务支持的模型
### ASR支持的模型
通过 `paddlespeech_server stats --task asr` 获取ASR服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
### TTS支持的模型
通过 `paddlespeech_server stats --task tts` 获取TTS服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
### CLS支持的模型
通过 `paddlespeech_server stats --task cls` 获取CLS服务支持的所有模型,其中静态模型可用于 paddle inference 推理。
......@@ -103,13 +103,14 @@ class ServerStatsExecutor():
'--task',
type=str,
default=None,
choices=['asr', 'tts'],
choices=['asr', 'tts', 'cls'],
help='Choose speech task.',
required=True)
self.task_choices = ['asr', 'tts']
self.task_choices = ['asr', 'tts', 'cls']
self.model_name_format = {
'asr': 'Model-Language-Sample Rate',
'tts': 'Model-Language'
'tts': 'Model-Language',
'cls': 'Model-Sample Rate'
}
def show_support_models(self, pretrained_models: dict):
......@@ -173,54 +174,25 @@ class ServerStatsExecutor():
"Failed to get the table of TTS pretrained models supported in the service."
)
return False
@stats_wrapper
def __call__(
self,
task: str=None, ):
"""
Python API to call an executor.
"""
self.task = task
if self.task not in self.task_choices:
print("Please input correct speech task, choices = ['asr', 'tts']")
elif self.task == 'asr':
elif self.task == 'cls':
try:
from paddlespeech.cli.asr.infer import pretrained_models
print(
"Here is the table of ASR pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show ASR static pretrained model
from paddlespeech.server.engine.asr.paddleinference.asr_engine import pretrained_models
print(
"Here is the table of ASR static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
except BaseException:
print(
"Failed to get the table of ASR pretrained models supported in the service."
)
elif self.task == 'tts':
try:
from paddlespeech.cli.tts.infer import pretrained_models
print(
"Here is the table of TTS pretrained models supported in the service."
from paddlespeech.cli.cls.infer import pretrained_models
logger.info(
"Here is the table of CLS pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
# show TTS static pretrained model
from paddlespeech.server.engine.tts.paddleinference.tts_engine import pretrained_models
print(
"Here is the table of TTS static pretrained models supported in the service."
# show CLS static pretrained model
from paddlespeech.server.engine.cls.paddleinference.cls_engine import pretrained_models
logger.info(
"Here is the table of CLS static pretrained models supported in the service."
)
self.show_support_models(pretrained_models)
return True
except BaseException:
print(
"Failed to get the table of TTS pretrained models supported in the service."
logger.error(
"Failed to get the table of CLS pretrained models supported in the service."
)
return False
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册