Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
DeepSpeech
提交
4275c73a
D
DeepSpeech
项目概览
PaddlePaddle
/
DeepSpeech
大约 2 年 前同步成功
通知
210
Star
8425
Fork
1598
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
245
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
DeepSpeech
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
245
Issue
245
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4275c73a
编写于
11月 30, 2022
作者:
Z
zxcd
提交者:
GitHub
11月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update whisper model source (#2704)
上级
03ad2a0f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
7 addition
and
2 deletion
+7
-2
docs/source/released_model.md
docs/source/released_model.md
+7
-2
未找到文件。
docs/source/released_model.md
浏览文件 @
4275c73a
...
...
@@ -24,9 +24,14 @@ Model | Pre-Train Method | Pre-Train Data | Finetune Data | Size | Descriptions
[
Wav2vec2-large-960h-lv60-self Model
](
https://paddlespeech.bj.bcebos.com/wav2vec/wav2vec2-large-960h-lv60-self.pdparams
)
| wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | - | 1.18 GB |Pre-trained Wav2vec2.0 Model | - | - | - |
[
Wav2vec2ASR-large-960h-librispeech Model
](
https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr3/wav2vec2ASR-large-960h-librispeech_ckpt_1.3.1.model.tar.gz
)
| wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | Librispeech (960 h) | 718 MB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | - | 0.0189 |
[
Wav2vecASR Librispeech ASR3
](
../../examples/librispeech/asr3
)
|
### Whisper Model
Demo Link | Training Data | Size | Descriptions | CER | Model
:-----------: | :-----:| :-------: | :-----: | :-----: |:---------:|
[
Whisper
](
../../demos/whisper
)
| 680kh from internet | large: 5.8G,
</br>
medium: 2.9G,
</br>
small: 923M,
</br>
base: 277M,
</br>
tiny: 145M | Encoder:Transformer,
</br>
Decoder:Transformer,
</br>
Decoding method:
</br>
Greedy search | 2.7
</br>
(large, Librispeech) |
[
whisper-large
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-large-model.tar.gz
)
</br>
[
whisper-medium
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-medium-model.tar.gz
)
</br>
[
whisper-medium-English-only
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-medium-en-model.tar.gz
)
</br>
[
whisper-small
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-small-model.tar.gz
)
</br>
[
whisper-small-English-only
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-small-en-model.tar.gz
)
</br>
[
whisper-base
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-base-model.tar.gz
)
</br>
[
whisper-base-English-only
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-base-en-model.tar.gz
)
</br>
[
whisper-tiny
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-tiny-model.tar.gz
)
</br>
[
whisper-tiny-English-only
](
https://paddlespeech.bj.bcebos.com/whisper/whisper_model_20221122/whisper-tiny-en-model.tar.gz
)
### Language Model based on NGram
Language Model | Training Data | Token-based | Size | Descriptions
:------------:| :------------:|:------------: | :------------: | :------------:
|Language Model | Training Data | Token-based | Size | Descriptions|
| :------------: | :------------: | :------------: | :------------: | :------------: |
[
English LM
](
https://deepspeech.bj.bcebos.com/en_lm/common_crawl_00.prune01111.trie.klm
)
|
[
CommonCrawl(en.00)
](
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz
)
| Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
<br/>
About 1.85 billion n-grams;
<br/>
'trie' binary with '-a 22 -q 8 -b 8'
[
Mandarin LM Small
](
https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm
)
| Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
<br/>
About 0.13 billion n-grams;
<br/>
'probing' binary with default settings
[
Mandarin LM Large
](
https://deepspeech.bj.bcebos.com/zh_lm/zhidao_giga.klm
)
| Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
<br/>
About 3.7 billion n-grams;
<br/>
'probing' binary with default settings
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录