提交 27087de5 编写于 作者: H Hui Zhang

update librispeech asr1 transformer result

上级 ec9e70d5
......@@ -21,7 +21,7 @@
## Transformer
| Model | Params | Config | Augmentation| Test set | Decode method | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.725063021977743 | 0.047417 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.725063021977743 | 0.053922 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.725063021977743 | 0.053180 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.725063021977743 | 0.041026 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.484564081827799 | 0.044355 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.484564081827799 | 0.050479 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.484564081827799 | 0.049890 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescoring | 6.484564081827799 | 0.039200 |
\ No newline at end of file
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
# https://yaml.org/type/float.html
data:
train_manifest: data/manifest.train
......@@ -36,43 +73,6 @@ collator:
num_workers: 2
# network architecture
model:
cmvn_file:
cmvn_file_type: "json"
# encoder related
encoder: transformer
encoder_conf:
output_size: 256 # dimension of attention
attention_heads: 4
linear_units: 2048 # the number of units of position-wise feed forward
num_blocks: 12 # the number of encoder blocks
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.0
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
normalize_before: true
# decoder related
decoder: transformer
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 6
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
# hybrid CTC/attention
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false
training:
n_epoch: 120
accum_grad: 4
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册