提交 16fa4245 编写于 作者: H Hui Zhang

add test; attention

上级 bc6da7a1
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "breeding-haven",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/ssd5/zhanghui/DeepSpeech2.x\n"
]
},
{
"data": {
"text/plain": [
"'/home/ssd5/zhanghui/DeepSpeech2.x'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%cd ..\n",
"%pwd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "appropriate-theta",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LICENSE deepspeech examples\t\t requirements.txt tools\r\n",
"README.md docs\t libsndfile-1.0.28\t setup.sh\t utils\r\n",
"README_cn.md env.sh\t libsndfile-1.0.28.tar.gz tests\r\n"
]
}
],
"source": [
"!ls"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "entire-bloom",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ssd5/zhanghui/DeepSpeech2.x/tools/venv/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" def convert_to_list(value, n, name, dtype=np.int):\n",
"WARNING:root:override cat of paddle.Tensor if exists or register, remove this when fixed!\n",
"WARNING:root:register user masked_fill to paddle.Tensor, remove this when fixed!\n",
"WARNING:root:register user masked_fill_ to paddle.Tensor, remove this when fixed!\n",
"WARNING:root:register user repeat to paddle.Tensor, remove this when fixed!\n",
"WARNING:root:register user glu to paddle.nn.functional, remove this when fixed!\n",
"WARNING:root:register user GLU to paddle.nn, remove this when fixed!\n",
"WARNING:root:register user ConstantPad2d to paddle.nn, remove this when fixed!\n",
"WARNING:root:override ctc_loss of paddle.nn.functional if exists, remove this when fixed!\n"
]
}
],
"source": [
"from deepspeech.modules import loss"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "governmental-aircraft",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ssd5/zhanghui/DeepSpeech2.x/tools/venv/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.\n",
" and should_run_async(code)\n"
]
}
],
"source": [
"import paddle"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "proprietary-disaster",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<function deepspeech.modules.repeat(xs: paddle.VarBase, *size: Any) -> paddle.VarBase>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paddle.Tensor.repeat"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "first-diagram",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<property at 0x7fb515eeeb88>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paddle.Tensor.size"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "intelligent-david",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<function paddle.tensor.manipulation.concat(x, axis=0, name=None)>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"paddle.Tensor.cat"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "bronze-tenant",
"metadata": {},
"outputs": [],
"source": [
"a = paddle.to_tensor([12,32, 10, 12, 123,32 ,4])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "balanced-bearing",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.size"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "extreme-republic",
"metadata": {},
"outputs": [],
"source": [
"def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor:\n",
" nargs = len(args)\n",
" assert (nargs <= 1)\n",
" s = paddle.shape(xs)\n",
" if nargs == 1:\n",
" return s[args[0]]\n",
" else:\n",
" return s\n",
"\n",
"# logger.warn(\n",
"# \"override size of paddle.Tensor if exists or register, remove this when fixed!\"\n",
"# )\n",
"paddle.Tensor.size = size"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "gross-addiction",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,\n",
" [7])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.size(0)\n",
"a.size()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "adverse-dining",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,\n",
" [7])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a.size()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "popular-potato",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
此差异已折叠。
...@@ -43,20 +43,53 @@ if not hasattr(paddle.Tensor, 'cat'): ...@@ -43,20 +43,53 @@ if not hasattr(paddle.Tensor, 'cat'):
paddle.Tensor.cat = paddle.Tensor.concat paddle.Tensor.cat = paddle.Tensor.concat
def eq(xs: paddle.Tensor, ys: Union[paddle.Tensor, float]) -> paddle.Tensor:
return xs.equal(paddle.to_tensor(ys, dtype=xs.dtype, place=xs.place))
if not hasattr(paddle.Tensor, 'eq'):
logger.warn(
"override eq of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.eq = eq
def contiguous(xs: paddle.Tensor) -> paddle.Tensor:
return xs
if not hasattr(paddle.Tensor, 'contiguous'):
logger.warn(
"override contiguous of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.contiguous = contiguous
def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor: def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
nargs = len(args) nargs = len(args)
assert (nargs <= 1) assert (nargs <= 1)
s = paddle.shape(xs) s = paddle.shape(xs)
if nargs == 1: if nargs == 1:
return s[args] return s[args[0]]
else: else:
return s return s
# logger.warn( #`to_static` do not process `size` property, maybe some `paddle` api dependent on it.
# "override size of paddle.Tensor if exists or register, remove this when fixed!" logger.warn(
# ) "override size of paddle.Tensor "
# paddle.Tensor.size = size "(`to_static` do not process `size` property, maybe some `paddle` api dependent on it), remove this when fixed!"
)
paddle.Tensor.size = size
def view(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
return xs.reshape(args)
if not hasattr(paddle.Tensor, 'view'):
logger.warn("register user view to paddle.Tensor, remove this when fixed!")
paddle.Tensor.view = view
def masked_fill(xs: paddle.Tensor, def masked_fill(xs: paddle.Tensor,
...@@ -185,6 +218,14 @@ if not hasattr(paddle.nn, 'ConstantPad2d'): ...@@ -185,6 +218,14 @@ if not hasattr(paddle.nn, 'ConstantPad2d'):
"register user ConstantPad2d to paddle.nn, remove this when fixed!") "register user ConstantPad2d to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'ConstantPad2d', ConstantPad2d) setattr(paddle.nn, 'ConstantPad2d', ConstantPad2d)
if not hasattr(paddle, 'softmax'):
logger.warn("register user softmax to paddle, remove this when fixed!")
setattr(paddle, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle, 'sigmoid'):
logger.warn("register user softmax to paddle, remove this when fixed!")
setattr(paddle, 'sigmoid', paddle.nn.functional.sigmoid)
# hack loss # hack loss
def ctc_loss(logits, def ctc_loss(logits,
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi-Head Attention layer definition."""
import math
import logging
from typing import Optional, Tuple
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
logger = logging.getLogger(__name__)
__all__ = ["MultiHeadedAttention", "RelPositionMultiHeadedAttention"]
class MultiHeadedAttention(nn.Layer):
"""Multi-Head Attention layer."""
def __init__(self, n_head: int, n_feat: int, dropout_rate: float):
"""Construct an MultiHeadedAttention object.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
"""Transform query, key and value.
Args:
query (paddle.Tensor): Query tensor (#batch, time1, size).
key (paddle.Tensor): Key tensor (#batch, time2, size).
value (paddle.Tensor): Value tensor (#batch, time2, size).
Returns:
paddle.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
paddle.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
paddle.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose([0, 2, 1, 3]) # (batch, head, time1, d_k)
k = k.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
v = v.transpose([0, 2, 1, 3]) # (batch, head, time2, d_k)
return q, k, v
def forward_attention(self,
value: paddle.Tensor,
scores: paddle.Tensor,
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
"""Compute attention context vector.
Args:
value (paddle.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (paddle.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (paddle.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
paddle.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
scores = scores.masked_fill(mask, -float('inf'))
attn = paddle.softmax(
scores, axis=-1).masked_fill(mask,
0.0) # (batch, head, time1, time2)
else:
attn = paddle.softmax(
scores, axis=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = paddle.matmul(p_attn, value) # (batch, head, time1, d_k)
x = x.transpose([0, 2, 1, 3]).contiguous().view(
n_batch, -1, self.h * self.d_k) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
mask: Optional[paddle.Tensor]) -> paddle.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = paddle.matmul(q, k.transpose(
[0, 1, 3, 2])) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding."""
def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an RelPositionMultiHeadedAttention object.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
super().__init__(n_head, n_feat, dropout_rate)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x, zero_triu: bool=False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros(
(x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device,
dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0],
x.size()[1], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
pos_emb: torch.Tensor,
mask: Optional[torch.Tensor]):
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2) # (batch, time1, head, d_k)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(
self.d_k) # (batch, head, time1, time2)
return self.forward_attention(v, scores, mask)
...@@ -5,3 +5,4 @@ python_speech_features ...@@ -5,3 +5,4 @@ python_speech_features
tensorboardX tensorboardX
yacs yacs
typeguard typeguard
pre-commit
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册