提交 089a8ed6 编写于 作者: H Haoxin Ma

fix deepspeech2/model.py and deepspeech2/config.py

上级 55742773
......@@ -11,80 +11,26 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode as CN
from yacs.config import CfgNode
from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.collator import SpeechCollator
from deepspeech.exps.deepspeech2.model import DeepSpeech2Trainer
from deepspeech.exps.deepspeech2.model import DeepSpeech2Tester
_C = CN()
_C.data = CN(
dict(
train_manifest="",
dev_manifest="",
test_manifest="",
max_duration=float('inf'),
min_duration=0.0,
))
_C.collator =CN(
dict(
unit_type="char",
vocab_filepath="",
spm_model_prefix="",
mean_std_filepath="",
augmentation_config="",
random_seed=0,
specgram_type='linear', # 'linear', 'mfcc', 'fbank'
feat_dim=0, # 'mfcc', 'fbank'
delta_delta=False, # 'mfcc', 'fbank'
stride_ms=10.0, # ms
window_ms=20.0, # ms
n_fft=None, # fft points
max_freq=None, # None for samplerate/2
target_sample_rate=16000, # target sample rate
use_dB_normalization=True,
target_dB=-20,
dither=1.0, # feature dither
keep_transcription_text=False,
batch_size=32, # batch size
num_workers=0, # data loader workers
sortagrad=False, # sorted in first epoch when True
shuffle_method="batch_shuffle", # 'batch_shuffle', 'instance_shuffle'
))
_C = CfgNode()
_C.model = CN(
dict(
num_conv_layers=2, #Number of stacking convolution layers.
num_rnn_layers=3, #Number of stacking RNN layers.
rnn_layer_size=1024, #RNN layer size (number of RNN cells).
use_gru=True, #Use gru if set True. Use simple rnn if set False.
share_rnn_weights=True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported.
))
_C.data = ManifestDataset.params()
_C.collator = SpeechCollator.params()
DeepSpeech2Model.params(_C.model)
_C.model = DeepSpeech2Model.params()
_C.training = CN(
dict(
lr=5e-4, # learning rate
lr_decay=1.0, # learning rate decay
weight_decay=1e-6, # the coeff of weight decay
global_grad_clip=5.0, # the global norm clip
n_epoch=50, # train epochs
))
_C.training = DeepSpeech2Trainer.params()
_C.decoding = CN(
dict(
alpha=2.5, # Coef of LM for beam search.
beta=0.3, # Coef of WC for beam search.
cutoff_prob=1.0, # Cutoff probability for pruning.
cutoff_top_n=40, # Cutoff number for pruning.
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
decoding_method='ctc_beam_search', # Decoding method. Options: ctc_beam_search, ctc_greedy
error_rate_type='wer', # Error rate type for evaluation. Options `wer`, 'cer'
num_proc_bsearch=8, # # of CPUs for beam search.
beam_size=500, # Beam search width.
batch_size=128, # decoding batch size
))
_C.decoding = DeepSpeech2Tester.params()
def get_cfg_defaults():
......
......@@ -34,10 +34,28 @@ from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log
from typing import Optional
from yacs.config import CfgNode
logger = Log(__name__).getlog()
class DeepSpeech2Trainer(Trainer):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
# training config
default = CfgNode(
dict(
lr=5e-4, # learning rate
lr_decay=1.0, # learning rate decay
weight_decay=1e-6, # the coeff of weight decay
global_grad_clip=5.0, # the global norm clip
n_epoch=50, # train epochs
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self, config, args):
super().__init__(config, args)
......@@ -184,6 +202,27 @@ class DeepSpeech2Trainer(Trainer):
class DeepSpeech2Tester(DeepSpeech2Trainer):
@classmethod
def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
# testing config
default = CfgNode(
dict(
alpha=2.5, # Coef of LM for beam search.
beta=0.3, # Coef of WC for beam search.
cutoff_prob=1.0, # Cutoff probability for pruning.
cutoff_top_n=40, # Cutoff number for pruning.
lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm', # Filepath for language model.
decoding_method='ctc_beam_search', # Decoding method. Options: ctc_beam_search, ctc_greedy
error_rate_type='wer', # Error rate type for evaluation. Options `wer`, 'cer'
num_proc_bsearch=8, # # of CPUs for beam search.
beam_size=500, # Beam search width.
batch_size=128, # decoding batch size
))
if config is not None:
config.merge_from_other_cfg(default)
return default
def __init__(self, config, args):
super().__init__(config, args)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册