提交 02caa564 编写于 作者: H Hui Zhang

fix config

上级 8307b70f
......@@ -2,10 +2,18 @@
"cells": [
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 2,
"id": "designing-borough",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspace/DeepSpeech-2.x/tools/venv/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.\n",
" and should_run_async(code)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
......@@ -61,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 5,
"id": "swiss-referral",
"metadata": {},
"outputs": [
......@@ -74,13 +82,69 @@
"False\n",
"False\n",
"False\n",
"False\n"
"False\n",
"[[ 1. 1. 1. ... 1. 1.\n",
" 1. ]\n",
" [ 0.5403023 0.59737533 0.6479059 ... 1. 1.\n",
" 1. ]\n",
" [-0.41614684 -0.28628543 -0.1604359 ... 0.99999994 1.\n",
" 1. ]\n",
" ...\n",
" [-0.92514753 -0.66694194 -0.67894876 ... 0.9999276 0.99993724\n",
" 0.9999457 ]\n",
" [-0.81928825 -0.9959641 -0.999139 ... 0.99992603 0.999936\n",
" 0.99994457]\n",
" [ 0.03982088 -0.52298605 -0.6157435 ... 0.99992454 0.9999347\n",
" 0.99994344]]\n",
"----\n",
"[[ 1. 1. 1. ... 1. 1.\n",
" 1. ]\n",
" [ 0.54030234 0.59737533 0.6479059 ... 1. 1.\n",
" 1. ]\n",
" [-0.41614684 -0.28628543 -0.1604359 ... 1. 1.\n",
" 1. ]\n",
" ...\n",
" [-0.92514753 -0.66694194 -0.67894876 ... 0.9999276 0.9999373\n",
" 0.9999457 ]\n",
" [-0.81928825 -0.9959641 -0.999139 ... 0.99992603 0.999936\n",
" 0.99994457]\n",
" [ 0.03982088 -0.5229861 -0.6157435 ... 0.99992454 0.9999347\n",
" 0.99994344]]\n",
")))))))\n",
"[[ 0.0000000e+00 0.0000000e+00 0.0000000e+00 ... 0.0000000e+00\n",
" 0.0000000e+00 0.0000000e+00]\n",
" [ 8.4147096e-01 8.0196178e-01 7.6172036e-01 ... 1.2409373e-04\n",
" 1.1547816e-04 1.0746076e-04]\n",
" [ 9.0929741e-01 9.5814437e-01 9.8704624e-01 ... 2.4818745e-04\n",
" 2.3095631e-04 2.1492151e-04]\n",
" ...\n",
" [ 3.7960774e-01 7.4510968e-01 7.3418564e-01 ... 1.2036801e-02\n",
" 1.1201146e-02 1.0423505e-02]\n",
" [-5.7338190e-01 -8.9752287e-02 -4.1488394e-02 ... 1.2160885e-02\n",
" 1.1316618e-02 1.0530960e-02]\n",
" [-9.9920684e-01 -8.5234123e-01 -7.8794664e-01 ... 1.2284970e-02\n",
" 1.1432089e-02 1.0638415e-02]]\n",
"----\n",
"[[ 0.0000000e+00 0.0000000e+00 0.0000000e+00 ... 0.0000000e+00\n",
" 0.0000000e+00 0.0000000e+00]\n",
" [ 8.4147096e-01 8.0196178e-01 7.6172036e-01 ... 1.2409373e-04\n",
" 1.1547816e-04 1.0746076e-04]\n",
" [ 9.0929741e-01 9.5814437e-01 9.8704624e-01 ... 2.4818745e-04\n",
" 2.3095631e-04 2.1492151e-04]\n",
" ...\n",
" [ 3.7960774e-01 7.4510968e-01 7.3418564e-01 ... 1.2036801e-02\n",
" 1.1201146e-02 1.0423505e-02]\n",
" [-5.7338190e-01 -8.9752287e-02 -4.1488394e-02 ... 1.2160885e-02\n",
" 1.1316618e-02 1.0530960e-02]\n",
" [-9.9920684e-01 -8.5234123e-01 -7.8794664e-01 ... 1.2284970e-02\n",
" 1.1432089e-02 1.0638415e-02]]\n"
]
}
],
"source": [
"import paddle\n",
"ppe = paddle.zeros([max_len, d_model])\n",
"paddle.set_device('cpu')\n",
"ppe = paddle.zeros((max_len, d_model), dtype='float32')\n",
"position = paddle.arange(0, max_len,\n",
" dtype='float32').unsqueeze(1)\n",
"print(np.allclose(position.numpy(), toruch_position))\n",
......@@ -98,12 +162,19 @@
"ppe[:, 0::2] = p_sin\n",
"ppe[:, 1::2] = p_cos\n",
"print(np.allclose(p_sin.numpy(), torhc_sin.cpu().detach().numpy()))\n",
"print(np.allclose(p_cos.numpy(), torhc_cos.cpu().detach().numpy()))"
"print(np.allclose(p_cos.numpy(), torhc_cos.cpu().detach().numpy()))\n",
"print(p_cos.numpy())\n",
"print(\"----\")\n",
"print(torhc_cos.cpu().detach().numpy())\n",
"print(\")))))))\")\n",
"print(p_sin.numpy())\n",
"print(\"----\")\n",
"print(torhc_sin.cpu().detach().numpy())"
]
},
{
"cell_type": "code",
"execution_count": 34,
"execution_count": 4,
"id": "integrated-boards",
"metadata": {},
"outputs": [
......
......@@ -31,7 +31,8 @@ def summary(layer: nn.Layer, print_func=print):
num_elements += np.prod(param.shape)
num_params += 1
if print_func:
print_func(f"Total parameters: {num_params}, {num_elements} elements.")
num_elements = num_elements / 1024**3
print_func(f"Total parameters: {num_params}, {num_elements}G elements.")
def print_grads(model, print_func=print):
......@@ -54,7 +55,8 @@ def print_params(model, print_func=print):
if print_func:
print_func(msg)
if print_func:
print_func(f"Total parameters: {num_params}, {total} elements.")
total = total / 1024**3
print_func(f"Total parameters: {num_params}, {total}G elements.")
def gradient_norm(layer: nn.Layer):
......
......@@ -84,7 +84,7 @@ training:
scheduler_conf:
warmup_steps: 25000
lr_decay: 1.0
log_interval: 1
log_interval: 100
decoding:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册