utility.py 8.5 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Contains data helper functions."""
15
import codecs
16 17
import json
import math
18 19 20
from typing import List
from typing import Optional
from typing import Text
21 22

import numpy as np
H
Hui Zhang 已提交
23

24
from deepspeech.utils.log import Log
25

26
logger = Log(__name__).getlog()
27

28
__all__ = [
29 30 31
    "load_dict", "load_cmvn", "read_manifest", "rms_to_db", "rms_to_dbfs",
    "max_dbfs", "mean_dbfs", "gain_db_to_ratio", "normalize_audio", "SOS",
    "EOS", "UNK", "BLANK", "MASKCTC"
32 33 34
]

IGNORE_ID = -1
35 36
# `sos` and `eos` using same token
SOS = "<eos>"
37 38 39
EOS = SOS
UNK = "<unk>"
BLANK = "<blank>"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
MASKCTC = "<mask>"


def load_dict(dict_path: Optional[Text], maskctc=False) -> Optional[List[Text]]:
    if dict_path is None:
        return None

    with open(dict_path, "r") as f:
        dictionary = f.readlines()
    char_list = [entry.split(" ")[0] for entry in dictionary]
    if BLANK not in char_list:
        char_list.insert(0, BLANK)
    if EOS not in char_list:
        char_list.append(EOS)
    # for non-autoregressive maskctc model
    if maskctc and MASKCTC not in char_list:
        char_list.append(MASKCTC)
    return char_list
58 59 60 61 62 63 64 65 66 67


def read_manifest(
        manifest_path,
        max_input_len=float('inf'),
        min_input_len=0.0,
        max_output_len=float('inf'),
        min_output_len=0.0,
        max_output_input_ratio=float('inf'),
        min_output_input_ratio=0.0, ):
68
    """Load and parse manifest file.
69

70 71
    Args:
        manifest_path ([type]): Manifest file to load and parse.
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        max_input_len ([type], optional): maximum output seq length, 
            in seconds for raw wav, in frame numbers for feature data. 
            Defaults to float('inf').
        min_input_len (float, optional): minimum input seq length, 
            in seconds for raw wav, in frame numbers for feature data. 
            Defaults to 0.0.
        max_output_len (float, optional): maximum input seq length, 
            in modeling units. Defaults to 500.0.
        min_output_len (float, optional): minimum input seq length, 
            in modeling units. Defaults to 0.0.
        max_output_input_ratio (float, optional): 
            maximum output seq length/output seq length ratio. Defaults to 10.0.
        min_output_input_ratio (float, optional): 
            minimum output seq length/output seq length ratio. Defaults to 0.05.
86 87 88

    Raises:
        IOError: If failed to parse the manifest.
89

90 91
    Returns:
        List[dict]: Manifest parsing results.
92
    """
93

94
    manifest = []
95
    for json_line in codecs.open(manifest_path, 'r', 'utf-8'):
96 97 98 99
        try:
            json_data = json.loads(json_line)
        except Exception as e:
            raise IOError("Error reading manifest: %s" % str(e))
100 101 102 103 104 105 106 107 108 109 110 111 112 113

        feat_len = json_data["feat_shape"][
            0] if 'feat_shape' in json_data else 1.0
        token_len = json_data["token_shape"][
            0] if 'token_shape' in json_data else 1.0
        conditions = [
            feat_len >= min_input_len,
            feat_len <= max_input_len,
            token_len >= min_output_len,
            token_len <= max_output_len,
            token_len / feat_len >= min_output_input_ratio,
            token_len / feat_len <= max_output_input_ratio,
        ]
        if all(conditions):
114 115
            manifest.append(json_data)
    return manifest
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289


def rms_to_db(rms: float):
    """Root Mean Square to dB.

    Args:
        rms ([float]): root mean square

    Returns:
        float: dB
    """
    return 20.0 * math.log10(max(1e-16, rms))


def rms_to_dbfs(rms: float):
    """Root Mean Square to dBFS.
    https://fireattack.wordpress.com/2017/02/06/replaygain-loudness-normalization-and-applications/
    Audio is mix of sine wave, so 1 amp sine wave's Full scale is 0.7071, equal to -3.0103dB.
   
    dB = dBFS + 3.0103
    dBFS = db - 3.0103
    e.g. 0 dB = -3.0103 dBFS

    Args:
        rms ([float]): root mean square

    Returns:
        float: dBFS
    """
    return rms_to_db(rms) - 3.0103


def max_dbfs(sample_data: np.ndarray):
    """Peak dBFS based on the maximum energy sample. 

    Args:
        sample_data ([np.ndarray]): float array, [-1, 1].

    Returns:
        float: dBFS 
    """
    # Peak dBFS based on the maximum energy sample. Will prevent overdrive if used for normalization.
    return rms_to_dbfs(max(abs(np.min(sample_data)), abs(np.max(sample_data))))


def mean_dbfs(sample_data):
    """Peak dBFS based on the RMS energy. 

    Args:
        sample_data ([np.ndarray]): float array, [-1, 1].

    Returns:
        float: dBFS 
    """
    return rms_to_dbfs(
        math.sqrt(np.mean(np.square(sample_data, dtype=np.float64))))


def gain_db_to_ratio(gain_db: float):
    """dB to ratio

    Args:
        gain_db (float): gain in dB

    Returns:
        float: scale in amp
    """
    return math.pow(10.0, gain_db / 20.0)


def normalize_audio(sample_data: np.ndarray, dbfs: float=-3.0103):
    """Nomalize audio to dBFS.
    
    Args:
        sample_data (np.ndarray): input wave samples, [-1, 1].
        dbfs (float, optional): target dBFS. Defaults to -3.0103.

    Returns:
        np.ndarray: normalized wave
    """
    return np.maximum(
        np.minimum(sample_data * gain_db_to_ratio(dbfs - max_dbfs(sample_data)),
                   1.0), -1.0)


def _load_json_cmvn(json_cmvn_file):
    """ Load the json format cmvn stats file and calculate cmvn

    Args:
        json_cmvn_file: cmvn stats file in json format

    Returns:
        a numpy array of [means, vars]
    """
    with open(json_cmvn_file) as f:
        cmvn_stats = json.load(f)

    means = cmvn_stats['mean_stat']
    variance = cmvn_stats['var_stat']
    count = cmvn_stats['frame_num']
    for i in range(len(means)):
        means[i] /= count
        variance[i] = variance[i] / count - means[i] * means[i]
        if variance[i] < 1.0e-20:
            variance[i] = 1.0e-20
        variance[i] = 1.0 / math.sqrt(variance[i])
    cmvn = np.array([means, variance])
    return cmvn


def _load_kaldi_cmvn(kaldi_cmvn_file):
    """ Load the kaldi format cmvn stats file and calculate cmvn

    Args:
        kaldi_cmvn_file:  kaldi text style global cmvn file, which
           is generated by:
           compute-cmvn-stats --binary=false scp:feats.scp global_cmvn

    Returns:
        a numpy array of [means, vars]
    """
    means = []
    variance = []
    with open(kaldi_cmvn_file, 'r') as fid:
        # kaldi binary file start with '\0B'
        if fid.read(2) == '\0B':
            logger.error('kaldi cmvn binary file is not supported, please '
                         'recompute it by: compute-cmvn-stats --binary=false '
                         ' scp:feats.scp global_cmvn')
            sys.exit(1)
        fid.seek(0)
        arr = fid.read().split()
        assert (arr[0] == '[')
        assert (arr[-2] == '0')
        assert (arr[-1] == ']')
        feat_dim = int((len(arr) - 2 - 2) / 2)
        for i in range(1, feat_dim + 1):
            means.append(float(arr[i]))
        count = float(arr[feat_dim + 1])
        for i in range(feat_dim + 2, 2 * feat_dim + 2):
            variance.append(float(arr[i]))

    for i in range(len(means)):
        means[i] /= count
        variance[i] = variance[i] / count - means[i] * means[i]
        if variance[i] < 1.0e-20:
            variance[i] = 1.0e-20
        variance[i] = 1.0 / math.sqrt(variance[i])
    cmvn = np.array([means, variance])
    return cmvn


def load_cmvn(cmvn_file: str, filetype: str):
    """load cmvn from file.

    Args:
        cmvn_file (str): cmvn path.
        filetype (str): file type, optional[npz, json, kaldi].

    Raises:
        ValueError: file type not support.

    Returns:
        Tuple[np.ndarray, np.ndarray]: mean, istd
    """
    assert filetype in ['npz', 'json', 'kaldi'], filetype
    filetype = filetype.lower()
    if filetype == "json":
        cmvn = _load_json_cmvn(cmvn_file)
    elif filetype == "kaldi":
        cmvn = _load_kaldi_cmvn(cmvn_file)
    else:
        raise ValueError(f"cmvn file type no support: {filetype}")
    return cmvn[0], cmvn[1]