You need to sign in or sign up before continuing.
model.py 16.2 KB
Newer Older
H
huangyuxin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains DeepSpeech2 and DeepSpeech2Online model."""
import time
from collections import defaultdict
from contextlib import nullcontext
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
from deepspeech2x.models.ds2 import DeepSpeech2InferModel
from deepspeech2x.models.ds2 import DeepSpeech2Model
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.ds2_online import DeepSpeech2InferModelOnline
from deepspeech.models.ds2_online import DeepSpeech2ModelOnline
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
from deepspeech.training.trainer import Trainer
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log
#from deepspeech.utils.log import Autolog

logger = Log(__name__).getlog()


class DeepSpeech2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                lr_decay=1.0,  # learning rate decay
                weight_decay=1e-6,  # the coeff of weight decay
                global_grad_clip=5.0,  # the global norm clip
                n_epoch=50,  # train epochs
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

        # forward
        utt, audio, audio_len, text, text_len = batch_data
        loss = self.model(audio, audio_len, text, text_len)
        losses_np = {
            'train_loss': float(loss),
        }

        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
            context = self.model.no_sync
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext

        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.iteration += 1

        iteration_time = time.time() - start

        msg += "train time: {:>.3f}s, ".format(iteration_time)
        msg += "batch size: {}, ".format(self.config.collator.batch_size)
        msg += "accum: {}, ".format(train_conf.accum_grad)
        msg += ', '.join('{}: {:>.6f}'.format(k, v)
                         for k, v in losses_np.items())
        logger.info(msg)

        if dist.get_rank() == 0 and self.visualizer:
            for k, v in losses_np.items():
                # `step -1` since we update `step` after optimizer.step().
                self.visualizer.add_scalar("train/{}".format(k), v,
                                           self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        self.model.eval()
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
            utt, audio, audio_len, text, text_len = batch
            loss = self.model(audio, audio_len, text, text_len)
            if paddle.isfinite(loss):
                num_utts = batch[1].shape[0]
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch : {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def setup_model(self):
        config = self.config.clone()
        config.defrost()
        config.model.feat_size = self.train_loader.collate_fn.feature_size
        #config.model.dict_size = self.train_loader.collate_fn.vocab_size
        config.model.dict_size = len(self.train_loader.collate_fn.vocab_list)
        config.freeze()

        if self.args.model_type == 'offline':
            model = DeepSpeech2Model.from_config(config.model)
        elif self.args.model_type == 'online':
            model = DeepSpeech2ModelOnline.from_config(config.model)
        else:
            raise Exception("wrong model type")
        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        grad_clip = ClipGradByGlobalNormWithLog(
            config.training.global_grad_clip)
        lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
            learning_rate=config.training.lr,
            gamma=config.training.lr_decay,
            verbose=True)
        optimizer = paddle.optimizer.Adam(
            learning_rate=lr_scheduler,
            parameters=model.parameters(),
            weight_decay=paddle.regularizer.L2Decay(
                config.training.weight_decay),
            grad_clip=grad_clip)

        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
        config.collator.keep_transcription_text = False

        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.test_manifest
        test_dataset = ManifestDataset.from_config(config)

        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
                batch_size=config.collator.batch_size,
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
                batch_size=config.collator.batch_size,
                drop_last=True,
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)

        collate_fn_train = SpeechCollator.from_config(config)

        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

        config.collator.keep_transcription_text = True
        config.collator.augmentation_config = ""
        collate_fn_test = SpeechCollator.from_config(config)

        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers)
        self.valid_loader = DataLoader(
            dev_dataset,
            batch_size=config.collator.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=collate_fn_dev)
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=collate_fn_test)
        if "<eos>" in self.test_loader.collate_fn.vocab_list:
            self.test_loader.collate_fn.vocab_list.remove("<eos>")
        if "<eos>" in self.valid_loader.collate_fn.vocab_list:
            self.valid_loader.collate_fn.vocab_list.remove("<eos>")
        if "<eos>" in self.train_loader.collate_fn.vocab_list:
            self.train_loader.collate_fn.vocab_list.remove("<eos>")
        logger.info("Setup train/valid/test  Dataloader!")


class DeepSpeech2Tester(DeepSpeech2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # testing config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='ctc_beam_search',  # Decoding method. Options: ctc_beam_search, ctc_greedy
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=500,  # Beam search width.
                batch_size=128,  # decoding batch size
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        vocab_list = self.test_loader.collate_fn.vocab_list
        if "" in vocab_list:
            space_id = vocab_list.index("")
            vocab_list[space_id] = " "

        target_transcripts = self.ordid2token(texts, texts_len)

        result_transcripts = self.compute_result_transcripts(audio, audio_len,
                                                             vocab_list, cfg)
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
                fout.write(utt + " " + result + "\n")
            logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
                        (target, result))
            logger.info("Current error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type)

    def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            vocab_list,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch)
        return result_transcripts

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
        self.model.eval()
        cfg = self.config
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        with open(self.args.result_file, 'w') as fout:
            for i, batch in enumerate(self.test_loader):
                utts, audio, audio_len, texts, texts_len = batch
                metrics = self.compute_metrics(utts, audio, audio_len, texts,
                                               texts_len, fout)
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                logger.info("Error rate [%s] (%d/?) = %f" %
                            (error_rate_type, num_ins, errors_sum / len_refs))

        # logging
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

    # self.autolog.report()

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            exit(-1)

    def export(self):
        if self.args.model_type == 'offline':
            infer_model = DeepSpeech2InferModel.from_pretrained(
                self.test_loader, self.config, self.args.checkpoint_path)
        elif self.args.model_type == 'online':
            infer_model = DeepSpeech2InferModelOnline.from_pretrained(
                self.test_loader, self.config, self.args.checkpoint_path)
        else:
            raise Exception("wrong model type")

        infer_model.eval()
        feat_dim = self.test_loader.collate_fn.feature_size
        static_model = infer_model.export()
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            exit(-1)

    def setup(self):
        """Setup the experiment.
        """
H
Hui Zhang 已提交
404
        paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
H
huangyuxin 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir