mix_frontend.py 5.8 KB
Newer Older
L
lym0302 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Dict
from typing import List

import paddle

from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.zh_frontend import Frontend


class MixFrontend():
    def __init__(self,
                 g2p_model="pypinyin",
                 phone_vocab_path=None,
                 tone_vocab_path=None):

        self.zh_frontend = Frontend(
            phone_vocab_path=phone_vocab_path, tone_vocab_path=tone_vocab_path)
        self.en_frontend = English(phone_vocab_path=phone_vocab_path)
        self.SENTENCE_SPLITOR = re.compile(r'([:、,;。?!,;?!][”’]?)')
        self.sp_id = self.zh_frontend.vocab_phones["sp"]
        self.sp_id_tensor = paddle.to_tensor([self.sp_id])

    def is_chinese(self, char):
        if char >= '\u4e00' and char <= '\u9fa5':
            return True
        else:
            return False

    def is_alphabet(self, char):
        if (char >= '\u0041' and char <= '\u005a') or (char >= '\u0061' and
                                                       char <= '\u007a'):
            return True
        else:
            return False

    def is_number(self, char):
        if char >= '\u0030' and char <= '\u0039':
            return True
        else:
            return False

    def is_other(self, char):
        if not (self.is_chinese(char) or self.is_number(char) or
                self.is_alphabet(char)):
            return True
        else:
            return False

    def _split(self, text: str) -> List[str]:
        text = re.sub(r'[《》【】<=>{}()()#&@“”^_|…\\]', '', text)
        text = self.SENTENCE_SPLITOR.sub(r'\1\n', text)
        text = text.strip()
        sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
        return sentences

    def _distinguish(self, text: str) -> List[str]:
        # sentence --> [ch_part, en_part, ch_part, ...]

        segments = []
        types = []

        flag = 0
        temp_seg = ""
        temp_lang = ""

        # Determine the type of each character. type: blank, chinese, alphabet, number, unk.
        for ch in text:
            if self.is_chinese(ch):
                types.append("zh")
            elif self.is_alphabet(ch):
                types.append("en")
            elif ch == " ":
                types.append("blank")
            elif self.is_number(ch):
                types.append("num")
            else:
                types.append("unk")

        assert len(types) == len(text)

        for i in range(len(types)):

            # find the first char of the seg
            if flag == 0:
                if types[i] != "unk" and types[i] != "blank":
                    temp_seg += text[i]
                    temp_lang = types[i]
                    flag = 1

            else:
                if types[i] == temp_lang or types[i] == "num":
                    temp_seg += text[i]

                elif temp_lang == "num" and types[i] != "unk":
                    temp_seg += text[i]
                    if types[i] == "zh" or types[i] == "en":
                        temp_lang = types[i]

                elif temp_lang == "en" and types[i] == "blank":
                    temp_seg += text[i]

                elif types[i] == "unk":
                    pass

                else:
                    segments.append((temp_seg, temp_lang))

                    if types[i] != "unk" and types[i] != "blank":
                        temp_seg = text[i]
                        temp_lang = types[i]
                        flag = 1
                    else:
                        flag = 0
                        temp_seg = ""
                        temp_lang = ""

        segments.append((temp_seg, temp_lang))

        return segments

    def get_input_ids(self,
                      sentence: str,
                      merge_sentences: bool=True,
                      get_tone_ids: bool=False,
                      add_sp: bool=True) -> Dict[str, List[paddle.Tensor]]:

        sentences = self._split(sentence)
        phones_list = []
        result = {}

        for text in sentences:
            phones_seg = []
            segments = self._distinguish(text)
            for seg in segments:
                content = seg[0]
                lang = seg[1]
                if lang == "zh":
                    input_ids = self.zh_frontend.get_input_ids(
                        content,
                        merge_sentences=True,
                        get_tone_ids=get_tone_ids)

                elif lang == "en":
                    input_ids = self.en_frontend.get_input_ids(
                        content, merge_sentences=True)

                phones_seg.append(input_ids["phone_ids"][0])
                if add_sp:
                    phones_seg.append(self.sp_id_tensor)

            phones = paddle.concat(phones_seg)
            phones_list.append(phones)

        if merge_sentences:
            merge_list = paddle.concat(phones_list)
            # rm the last 'sp' to avoid the noise at the end
            # cause in the training data, no 'sp' in the end
            if merge_list[-1] == self.sp_id_tensor:
                merge_list = merge_list[:-1]
            phones_list = []
            phones_list.append(merge_list)

        result["phone_ids"] = phones_list

        return result