deepspeech2_model_test.py 3.4 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
import unittest
from deepspeech.models.deepspeech2 import DeepSpeech2Model


class TestDeepSpeech2Model(unittest.TestCase):
    def setUp(self):
        paddle.set_device('cpu')

        self.batch_size = 2
        self.feat_dim = 161
        max_len = 64

H
flake8  
Hui Zhang 已提交
29
        # (B, T, D)
H
Hui Zhang 已提交
30
        audio = np.random.randn(self.batch_size, max_len, self.feat_dim)
H
Hui Zhang 已提交
31
        audio_len = np.random.randint(max_len, size=self.batch_size)
H
Hui Zhang 已提交
32
        audio_len[-1] = max_len
H
flake8  
Hui Zhang 已提交
33
        # (B, U)
H
Hui Zhang 已提交
34 35
        text = np.array([[1, 2], [1, 2]])
        text_len = np.array([2] * self.batch_size)
H
Hui Zhang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

        self.audio = paddle.to_tensor(audio, dtype='float32')
        self.audio_len = paddle.to_tensor(audio_len, dtype='int64')
        self.text = paddle.to_tensor(text, dtype='int32')
        self.text_len = paddle.to_tensor(text_len, dtype='int64')

    def test_ds2_1(self):
        model = DeepSpeech2Model(
            feat_size=self.feat_dim,
            dict_size=10,
            num_conv_layers=2,
            num_rnn_layers=3,
            rnn_size=1024,
            use_gru=False,
            share_rnn_weights=False, )
        loss = model(self.audio, self.audio_len, self.text, self.text_len)
        self.assertEqual(loss.numel(), 1)

    def test_ds2_2(self):
        model = DeepSpeech2Model(
            feat_size=self.feat_dim,
            dict_size=10,
            num_conv_layers=2,
            num_rnn_layers=3,
            rnn_size=1024,
            use_gru=True,
            share_rnn_weights=False, )
        loss = model(self.audio, self.audio_len, self.text, self.text_len)
        self.assertEqual(loss.numel(), 1)

    def test_ds2_3(self):
        model = DeepSpeech2Model(
            feat_size=self.feat_dim,
            dict_size=10,
            num_conv_layers=2,
            num_rnn_layers=3,
            rnn_size=1024,
            use_gru=False,
            share_rnn_weights=True, )
        loss = model(self.audio, self.audio_len, self.text, self.text_len)
        self.assertEqual(loss.numel(), 1)

    def test_ds2_4(self):
        model = DeepSpeech2Model(
            feat_size=self.feat_dim,
            dict_size=10,
            num_conv_layers=2,
            num_rnn_layers=3,
            rnn_size=1024,
            use_gru=True,
            share_rnn_weights=True, )
        loss = model(self.audio, self.audio_len, self.text, self.text_len)
        self.assertEqual(loss.numel(), 1)

    def test_ds2_5(self):
        model = DeepSpeech2Model(
            feat_size=self.feat_dim,
            dict_size=10,
            num_conv_layers=2,
            num_rnn_layers=3,
            rnn_size=1024,
            use_gru=False,
            share_rnn_weights=False, )
        loss = model(self.audio, self.audio_len, self.text, self.text_len)
        self.assertEqual(loss.numel(), 1)


if __name__ == '__main__':
    unittest.main()