transformer_tts.py 29.6 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
小湉湉's avatar
小湉湉 已提交
14
# Modified from espnet(https://github.com/espnet/espnet)
H
Hui Zhang 已提交
15 16 17 18
"""Fastspeech2 related modules for paddle"""
from typing import Dict
from typing import Sequence
from typing import Tuple
小湉湉's avatar
小湉湉 已提交
19

H
Hui Zhang 已提交
20 21 22
import numpy
import paddle
import paddle.nn.functional as F
小湉湉's avatar
小湉湉 已提交
23
from paddle import nn
H
Hui Zhang 已提交
24 25
from typeguard import check_argument_types

26 27 28 29 30 31 32
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
from paddlespeech.t2s.modules.style_encoder import StyleEncoder
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.tacotron2.decoder import Prenet as DecoderPrenet
from paddlespeech.t2s.modules.tacotron2.encoder import Encoder as EncoderPrenet
小湉湉's avatar
小湉湉 已提交
33 34 35 36
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.transformer.decoder import Decoder
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.transformer.embedding import ScaledPositionalEncoding
小湉湉's avatar
小湉湉 已提交
37
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
小湉湉's avatar
小湉湉 已提交
38
from paddlespeech.t2s.modules.transformer.mask import subsequent_mask
H
Hui Zhang 已提交
39 40 41 42 43 44 45 46 47 48 49 50


class TransformerTTS(nn.Layer):
    """TTS-Transformer module.

    This is a module of text-to-speech Transformer described in `Neural Speech Synthesis
    with Transformer Network`_, which convert the sequence of tokens into the sequence
    of Mel-filterbanks.

    .. _`Neural Speech Synthesis with Transformer Network`:
        https://arxiv.org/pdf/1809.08895.pdf

51
    Args:
小湉湉's avatar
小湉湉 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        idim (int): 
            Dimension of the inputs.
        odim (int): 
            Dimension of the outputs.
        embed_dim (int, optional): 
            Dimension of character embedding.
        eprenet_conv_layers (int, optional): 
            Number of encoder prenet convolution layers.
        eprenet_conv_chans (int, optional): 
            Number of encoder prenet convolution channels.
        eprenet_conv_filts (int, optional): 
            Filter size of encoder prenet convolution.
        dprenet_layers (int, optional): 
            Number of decoder prenet layers.
        dprenet_units (int, optional): 
            Number of decoder prenet hidden units.
        elayers (int, optional): 
            Number of encoder layers.
        eunits (int, optional): 
            Number of encoder hidden units.
        adim (int, optional): 
            Number of attention transformation dimensions.
        aheads (int, optional): 
            Number of heads for multi head attention.
        dlayers (int, optional): 
            Number of decoder layers.
        dunits (int, optional): 
            Number of decoder hidden units.
        postnet_layers (int, optional): 
            Number of postnet layers.
        postnet_chans (int, optional): 
            Number of postnet channels.
        postnet_filts (int, optional): 
            Filter size of postnet.
        use_scaled_pos_enc (pool, optional): 
            Whether to use trainable scaled positional encoding.
        use_batch_norm (bool, optional): 
            Whether to use batch normalization in encoder prenet.
        encoder_normalize_before (bool, optional): 
            Whether to perform layer normalization before encoder block.
        decoder_normalize_before (bool, optional): 
            Whether to perform layer normalization before decoder block.
        encoder_concat_after (bool, optional): 
            Whether to concatenate attention layer's input and output in encoder.
        decoder_concat_after (bool, optional): 
            Whether to concatenate attention layer's input and output in decoder.
        positionwise_layer_type (str, optional): 
            Position-wise operation type.
        positionwise_conv_kernel_size (int, optional): 
            Kernel size in position wise conv 1d.
        reduction_factor (int, optional): 
            Reduction factor.
        spk_embed_dim (int, optional): 
            Number of speaker embedding dimenstions.
        spk_embed_integration_type (str, optional): 
            How to integrate speaker embedding.
        use_gst (str, optional): 
            Whether to use global style token.
        gst_tokens (int, optional): 
            The number of GST embeddings.
        gst_heads (int, optional): 
            The number of heads in GST multihead attention.
        gst_conv_layers (int, optional): 
            The number of conv layers in GST.
        gst_conv_chans_list (Sequence[int], optional): 
            List of the number of channels of conv layers in GST.
        gst_conv_kernel_size (int, optional): 
            Kernal size of conv layers in GST.
        gst_conv_stride (int, optional): 
            Stride size of conv layers in GST.
        gst_gru_layers (int, optional): 
            The number of GRU layers in GST.
        gst_gru_units (int, optional): 
            The number of GRU units in GST.
        transformer_lr (float, optional): 
            Initial value of learning rate.
        transformer_warmup_steps (int, optional): 
            Optimizer warmup steps.
        transformer_enc_dropout_rate (float, optional): 
            Dropout rate in encoder except attention and positional encoding.
        transformer_enc_positional_dropout_rate (float, optional): 
            Dropout rate after encoder positional encoding.
        transformer_enc_attn_dropout_rate (float, optional): 
            Dropout rate in encoder self-attention module.
        transformer_dec_dropout_rate (float, optional): 
            Dropout rate in decoder except attention & positional encoding.
        transformer_dec_positional_dropout_rate (float, optional): 
            Dropout rate after decoder positional encoding.
        transformer_dec_attn_dropout_rate (float, optional): 
            Dropout rate in deocoder self-attention module.
        transformer_enc_dec_attn_dropout_rate (float, optional): 
            Dropout rate in encoder-deocoder attention module.
        init_type (str, optional): 
            How to initialize transformer parameters.
        init_enc_alpha (float, optional): 
            Initial value of alpha in scaled pos encoding of the encoder.
        init_dec_alpha (float, optional): 
            Initial value of alpha in scaled pos encoding of the decoder.
        eprenet_dropout_rate (float, optional): 
            Dropout rate in encoder prenet.
        dprenet_dropout_rate (float, optional): 
            Dropout rate in decoder prenet.
        postnet_dropout_rate (float, optional): 
            Dropout rate in postnet.
        use_masking (bool, optional): 
            Whether to apply masking for padded part in loss calculation.
        use_weighted_masking (bool, optional): 
            Whether to apply weighted masking in loss calculation.
        bce_pos_weight (float, optional): 
            Positive sample weight in bce calculation (only for use_masking=true).
        loss_type (str, optional): 
            How to calculate loss.
        use_guided_attn_loss (bool, optional): 
            Whether to use guided attention loss.
        num_heads_applied_guided_attn (int, optional):
            Number of heads in each layer to apply guided attention loss.
        num_layers_applied_guided_attn (int, optional): 
            Number of layers to apply guided attention loss.
H
Hui Zhang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    """

    def __init__(
            self,
            # network structure related
            idim: int,
            odim: int,
            embed_dim: int=512,
            eprenet_conv_layers: int=3,
            eprenet_conv_chans: int=256,
            eprenet_conv_filts: int=5,
            dprenet_layers: int=2,
            dprenet_units: int=256,
            elayers: int=6,
            eunits: int=1024,
            adim: int=512,
            aheads: int=4,
            dlayers: int=6,
            dunits: int=1024,
            postnet_layers: int=5,
            postnet_chans: int=256,
            postnet_filts: int=5,
            positionwise_layer_type: str="conv1d",
            positionwise_conv_kernel_size: int=1,
            use_scaled_pos_enc: bool=True,
            use_batch_norm: bool=True,
            encoder_normalize_before: bool=True,
            decoder_normalize_before: bool=True,
            encoder_concat_after: bool=False,
            decoder_concat_after: bool=False,
            reduction_factor: int=1,
            spk_embed_dim: int=None,
            spk_embed_integration_type: str="add",
            use_gst: bool=False,
            gst_tokens: int=10,
            gst_heads: int=4,
            gst_conv_layers: int=6,
            gst_conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
            gst_conv_kernel_size: int=3,
            gst_conv_stride: int=2,
            gst_gru_layers: int=1,
            gst_gru_units: int=128,
            # training related
            transformer_enc_dropout_rate: float=0.1,
            transformer_enc_positional_dropout_rate: float=0.1,
            transformer_enc_attn_dropout_rate: float=0.1,
            transformer_dec_dropout_rate: float=0.1,
            transformer_dec_positional_dropout_rate: float=0.1,
            transformer_dec_attn_dropout_rate: float=0.1,
            transformer_enc_dec_attn_dropout_rate: float=0.1,
            eprenet_dropout_rate: float=0.5,
            dprenet_dropout_rate: float=0.5,
            postnet_dropout_rate: float=0.5,
            init_type: str="xavier_uniform",
            init_enc_alpha: float=1.0,
            init_dec_alpha: float=1.0,
            use_guided_attn_loss: bool=True,
            num_heads_applied_guided_attn: int=2,
            num_layers_applied_guided_attn: int=2, ):
        """Initialize Transformer module."""
        assert check_argument_types()
        super().__init__()

        # store hyperparameters
        self.idim = idim
        self.odim = odim
        self.eos = idim - 1
        self.spk_embed_dim = spk_embed_dim
        self.reduction_factor = reduction_factor
        self.use_gst = use_gst
        self.use_scaled_pos_enc = use_scaled_pos_enc
        self.use_guided_attn_loss = use_guided_attn_loss
        if self.use_guided_attn_loss:
            if num_layers_applied_guided_attn == -1:
                self.num_layers_applied_guided_attn = elayers
            else:
                self.num_layers_applied_guided_attn = num_layers_applied_guided_attn
            if num_heads_applied_guided_attn == -1:
                self.num_heads_applied_guided_attn = aheads
            else:
                self.num_heads_applied_guided_attn = num_heads_applied_guided_attn
        if self.spk_embed_dim is not None:
            self.spk_embed_integration_type = spk_embed_integration_type

        # use idx 0 as padding idx
        self.padding_idx = 0
        # set_global_initializer 会影响后面的全局,包括 create_parameter
        initialize(self, init_type)
258 259 260

        # get positional encoding layer type
        transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
H
Hui Zhang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

        # define transformer encoder
        if eprenet_conv_layers != 0:
            # encoder prenet
            encoder_input_layer = nn.Sequential(
                EncoderPrenet(
                    idim=idim,
                    embed_dim=embed_dim,
                    elayers=0,
                    econv_layers=eprenet_conv_layers,
                    econv_chans=eprenet_conv_chans,
                    econv_filts=eprenet_conv_filts,
                    use_batch_norm=use_batch_norm,
                    dropout_rate=eprenet_dropout_rate,
                    padding_idx=self.padding_idx, ),
                nn.Linear(eprenet_conv_chans, adim), )
        else:
            encoder_input_layer = nn.Embedding(
                num_embeddings=idim,
                embedding_dim=adim,
                padding_idx=self.padding_idx)
小湉湉's avatar
小湉湉 已提交
282
        self.encoder = TransformerEncoder(
H
Hui Zhang 已提交
283 284 285 286 287 288 289 290 291
            idim=idim,
            attention_dim=adim,
            attention_heads=aheads,
            linear_units=eunits,
            num_blocks=elayers,
            input_layer=encoder_input_layer,
            dropout_rate=transformer_enc_dropout_rate,
            positional_dropout_rate=transformer_enc_positional_dropout_rate,
            attention_dropout_rate=transformer_enc_attn_dropout_rate,
292
            pos_enc_layer_type=transformer_pos_enc_layer_type,
H
Hui Zhang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            normalize_before=encoder_normalize_before,
            concat_after=encoder_concat_after,
            positionwise_layer_type=positionwise_layer_type,
            positionwise_conv_kernel_size=positionwise_conv_kernel_size, )

        # define GST
        if self.use_gst:
            self.gst = StyleEncoder(
                idim=odim,  # the input is mel-spectrogram
                gst_tokens=gst_tokens,
                gst_token_dim=adim,
                gst_heads=gst_heads,
                conv_layers=gst_conv_layers,
                conv_chans_list=gst_conv_chans_list,
                conv_kernel_size=gst_conv_kernel_size,
                conv_stride=gst_conv_stride,
                gru_layers=gst_gru_layers,
                gru_units=gst_gru_units, )

        # define projection layer
        if self.spk_embed_dim is not None:
            if self.spk_embed_integration_type == "add":
                self.projection = nn.Linear(self.spk_embed_dim, adim)
            else:
                self.projection = nn.Linear(adim + self.spk_embed_dim, adim)

        # define transformer decoder
        if dprenet_layers != 0:
            # decoder prenet
            decoder_input_layer = nn.Sequential(
                DecoderPrenet(
                    idim=odim,
                    n_layers=dprenet_layers,
                    n_units=dprenet_units,
                    dropout_rate=dprenet_dropout_rate, ),
                nn.Linear(dprenet_units, adim), )
        else:
            decoder_input_layer = "linear"
331 332 333
        # get positional encoding class
        pos_enc_class = (ScaledPositionalEncoding
                         if self.use_scaled_pos_enc else PositionalEncoding)
H
Hui Zhang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        self.decoder = Decoder(
            odim=odim,  # odim is needed when no prenet is used
            attention_dim=adim,
            attention_heads=aheads,
            linear_units=dunits,
            num_blocks=dlayers,
            dropout_rate=transformer_dec_dropout_rate,
            positional_dropout_rate=transformer_dec_positional_dropout_rate,
            self_attention_dropout_rate=transformer_dec_attn_dropout_rate,
            src_attention_dropout_rate=transformer_enc_dec_attn_dropout_rate,
            input_layer=decoder_input_layer,
            use_output_layer=False,
            pos_enc_class=pos_enc_class,
            normalize_before=decoder_normalize_before,
            concat_after=decoder_concat_after, )

        # define final projection
        self.feat_out = nn.Linear(adim, odim * reduction_factor)
        self.prob_out = nn.Linear(adim, reduction_factor)

        # define postnet
        self.postnet = (None if postnet_layers == 0 else Postnet(
            idim=idim,
            odim=odim,
            n_layers=postnet_layers,
            n_chans=postnet_chans,
            n_filts=postnet_filts,
            use_batch_norm=use_batch_norm,
            dropout_rate=postnet_dropout_rate, ))

        # 闭合的 initialize() 中的 set_global_initializer 的作用域,防止其影响到 self._reset_parameters()
        nn.initializer.set_global_initializer(None)

        self._reset_parameters(
            init_enc_alpha=init_enc_alpha,
            init_dec_alpha=init_dec_alpha, )

    def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):

        # initialize alpha in scaled positional encoding
        if self.use_scaled_pos_enc:
            init_enc_alpha = paddle.to_tensor(init_enc_alpha)
            self.encoder.embed[-1].alpha = paddle.create_parameter(
                shape=init_enc_alpha.shape,
                dtype=str(init_enc_alpha.numpy().dtype),
                default_initializer=paddle.nn.initializer.Assign(
                    init_enc_alpha))

            init_dec_alpha = paddle.to_tensor(init_dec_alpha)
            self.decoder.embed[-1].alpha = paddle.create_parameter(
                shape=init_dec_alpha.shape,
                dtype=str(init_dec_alpha.numpy().dtype),
                default_initializer=paddle.nn.initializer.Assign(
                    init_dec_alpha))

    def forward(
            self,
            text: paddle.Tensor,
            text_lengths: paddle.Tensor,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
小湉湉's avatar
小湉湉 已提交
395
            spk_emb: paddle.Tensor=None,
H
Hui Zhang 已提交
396 397 398
    ) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
        """Calculate forward propagation.

399 400 401 402 403 404 405 406 407 408
        Args:
            text(Tensor(int64)): Batch of padded character ids (B, Tmax).
            text_lengths(Tensor(int64)): Batch of lengths of each input batch (B,).
            speech(Tensor): Batch of padded target features (B, Lmax, odim).
            speech_lengths(Tensor(int64)): Batch of the lengths of each target (B,).
            spk_emb(Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).

        Returns:
            Tensor: Loss scalar value.
            Dict: Statistics to be monitored.
H
Hui Zhang 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

        """
        # input of embedding must be int64
        text_lengths = paddle.cast(text_lengths, 'int64')

        # Add eos at the last of sequence
        text = numpy.pad(text.numpy(), ((0, 0), (0, 1)), 'constant')
        xs = paddle.to_tensor(text, dtype='int64')
        for i, l in enumerate(text_lengths):
            xs[i, l] = self.eos
        ilens = text_lengths + 1

        ys = speech
        olens = paddle.cast(speech_lengths, 'int64')

        # make labels for stop prediction
425 426 427 428
        stop_labels = make_pad_mask(olens - 1)
        # bool 类型无法切片
        stop_labels = paddle.cast(stop_labels, dtype='float32')
        stop_labels = F.pad(stop_labels, [0, 0, 0, 1], "constant", 1.0)
H
Hui Zhang 已提交
429 430 431

        # calculate transformer outputs
        after_outs, before_outs, logits = self._forward(xs, ilens, ys, olens,
小湉湉's avatar
小湉湉 已提交
432
                                                        spk_emb)
H
Hui Zhang 已提交
433 434 435 436

        # modifiy mod part of groundtruth

        if self.reduction_factor > 1:
437
            olens = olens - olens % self.reduction_factor
H
Hui Zhang 已提交
438 439
            max_olen = max(olens)
            ys = ys[:, :max_olen]
440 441
            stop_labels = stop_labels[:, :max_olen]
            stop_labels[:, -1] = 1.0  # make sure at least one frame has 1
442 443 444 445
            olens_in = olens // self.reduction_factor
        else:
            olens_in = olens

H
Hui Zhang 已提交
446 447 448 449 450 451 452 453 454
        need_dict = {}
        need_dict['encoder'] = self.encoder
        need_dict['decoder'] = self.decoder
        need_dict[
            'num_heads_applied_guided_attn'] = self.num_heads_applied_guided_attn
        need_dict[
            'num_layers_applied_guided_attn'] = self.num_layers_applied_guided_attn
        need_dict['use_scaled_pos_enc'] = self.use_scaled_pos_enc

455
        return after_outs, before_outs, logits, ys, stop_labels, olens, olens_in, need_dict
H
Hui Zhang 已提交
456 457 458 459 460 461 462

    def _forward(
            self,
            xs: paddle.Tensor,
            ilens: paddle.Tensor,
            ys: paddle.Tensor,
            olens: paddle.Tensor,
小湉湉's avatar
小湉湉 已提交
463
            spk_emb: paddle.Tensor,
H
Hui Zhang 已提交
464 465 466 467 468 469 470 471 472 473 474 475
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        # forward encoder
        x_masks = self._source_mask(ilens)
        hs, h_masks = self.encoder(xs, x_masks)

        # integrate with GST
        if self.use_gst:
            style_embs = self.gst(ys)
            hs = hs + style_embs.unsqueeze(1)

        # integrate speaker embedding
        if self.spk_embed_dim is not None:
小湉湉's avatar
小湉湉 已提交
476
            hs = self._integrate_with_spk_embed(hs, spk_emb)
H
Hui Zhang 已提交
477 478 479 480

        # thin out frames for reduction factor (B, Lmax, odim) ->  (B, Lmax//r, odim)
        if self.reduction_factor > 1:
            ys_in = ys[:, self.reduction_factor - 1::self.reduction_factor]
481
            olens_in = olens // self.reduction_factor
H
Hui Zhang 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        else:
            ys_in, olens_in = ys, olens

        # add first zero frame and remove last frame for auto-regressive
        ys_in = self._add_first_frame_and_remove_last_frame(ys_in)

        # forward decoder
        y_masks = self._target_mask(olens_in)
        zs, _ = self.decoder(ys_in, y_masks, hs, h_masks)
        # (B, Lmax//r, odim * r) -> (B, Lmax//r * r, odim)
        before_outs = self.feat_out(zs).reshape([zs.shape[0], -1, self.odim])
        # (B, Lmax//r, r) -> (B, Lmax//r * r)
        logits = self.prob_out(zs).reshape([zs.shape[0], -1])

        # postnet -> (B, Lmax//r * r, odim)
        if self.postnet is None:
            after_outs = before_outs
        else:
            after_outs = before_outs + self.postnet(
                before_outs.transpose([0, 2, 1])).transpose([0, 2, 1])

        return after_outs, before_outs, logits

    def inference(
            self,
            text: paddle.Tensor,
            speech: paddle.Tensor=None,
小湉湉's avatar
小湉湉 已提交
509
            spk_emb: paddle.Tensor=None,
H
Hui Zhang 已提交
510 511 512 513 514 515 516
            threshold: float=0.5,
            minlenratio: float=0.0,
            maxlenratio: float=10.0,
            use_teacher_forcing: bool=False,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        """Generate the sequence of features given the sequences of characters.

517 518 519 520 521 522 523 524 525 526 527 528 529
        Args:
            text(Tensor(int64)): Input sequence of characters (T,).
            speech(Tensor, optional): Feature sequence to extract style (N, idim).
            spk_emb(Tensor, optional): Speaker embedding vector (spk_embed_dim,).
            threshold(float, optional): Threshold in inference.
            minlenratio(float, optional): Minimum length ratio in inference.
            maxlenratio(float, optional): Maximum length ratio in inference.
            use_teacher_forcing(bool, optional): Whether to use teacher forcing.

        Returns:
            Tensor: Output sequence of features (L, odim).
            Tensor: Output sequence of stop probabilities (L,).
            Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).
H
Hui Zhang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

        """
        # input of embedding must be int64
        y = speech

        # add eos at the last of sequence
        text = numpy.pad(
            text.numpy(), (0, 1), 'constant', constant_values=self.eos)
        x = paddle.to_tensor(text, dtype='int64')

        # inference with teacher forcing
        if use_teacher_forcing:
            assert speech is not None, "speech must be provided with teacher forcing."

            # get teacher forcing outputs
            xs, ys = x.unsqueeze(0), y.unsqueeze(0)
小湉湉's avatar
小湉湉 已提交
546
            spk_emb = None if spk_emb is None else spk_emb.unsqueeze(0)
H
Hui Zhang 已提交
547 548 549 550
            ilens = paddle.to_tensor(
                [xs.shape[1]], dtype=paddle.int64, place=xs.place)
            olens = paddle.to_tensor(
                [ys.shape[1]], dtype=paddle.int64, place=ys.place)
小湉湉's avatar
小湉湉 已提交
551
            outs, *_ = self._forward(xs, ilens, ys, olens, spk_emb)
H
Hui Zhang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

            # get attention weights
            att_ws = []
            for i in range(len(self.decoder.decoders)):
                att_ws += [self.decoder.decoders[i].src_attn.attn]
            # (B, L, H, T_out, T_in)
            att_ws = paddle.stack(att_ws, axis=1)

            return outs[0], None, att_ws[0]

        # forward encoder
        xs = x.unsqueeze(0)
        hs, _ = self.encoder(xs, None)

        # integrate GST
        if self.use_gst:
            style_embs = self.gst(y.unsqueeze(0))
            hs = hs + style_embs.unsqueeze(1)

        # integrate speaker embedding
小湉湉's avatar
小湉湉 已提交
572 573 574
        if spk_emb is not None:
            spk_emb = spk_emb.unsqueeze(0)
            hs = self._integrate_with_spk_embed(hs, spk_emb)
H
Hui Zhang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

        # set limits of length
        maxlen = int(hs.shape[1] * maxlenratio / self.reduction_factor)
        minlen = int(hs.shape[1] * minlenratio / self.reduction_factor)

        # initialize
        idx = 0
        ys = paddle.zeros([1, 1, self.odim])
        outs, probs = [], []

        # forward decoder step-by-step
        z_cache = None
        while True:
            # update index
            idx += 1

            # calculate output and stop prob at idx-th step
            y_masks = subsequent_mask(idx).unsqueeze(0)
            z, z_cache = self.decoder.forward_one_step(
                ys, y_masks, hs, cache=z_cache)  # (B, adim)
            outs += [
                self.feat_out(z).reshape([self.reduction_factor, self.odim])
            ]  # [(r, odim), ...]
            probs += [F.sigmoid(self.prob_out(z))[0]]  # [(r), ...]

            # update next inputs
            ys = paddle.concat(
                (ys, outs[-1][-1].reshape([1, 1, self.odim])),
                axis=1)  # (1, idx + 1, odim)

            # get attention weights
            att_ws_ = []
            for name, m in self.named_sublayers():
                if isinstance(m, MultiHeadedAttention) and "src" in name:
                    # [(#heads, 1, T),...]
                    att_ws_ += [m.attn[0, :, -1].unsqueeze(1)]
            if idx == 1:
                att_ws = att_ws_
            else:
                # [(#heads, l, T), ...]
                att_ws = [
                    paddle.concat([att_w, att_w_], axis=1)
                    for att_w, att_w_ in zip(att_ws, att_ws_)
                ]

            # check whether to finish generation
            if sum(paddle.cast(probs[-1] >= threshold,
                               'int64')) > 0 or idx >= maxlen:
                # check mininum length
                if idx < minlen:
                    continue
                # (L, odim) -> (1, L, odim) -> (1, odim, L)
                outs = (paddle.concat(outs, axis=0).unsqueeze(0).transpose(
                    [0, 2, 1]))
                if self.postnet is not None:
                    # (1, odim, L)
                    outs = outs + self.postnet(outs)
                # (L, odim)
                outs = outs.transpose([0, 2, 1]).squeeze(0)
                probs = paddle.concat(probs, axis=0)
                break

        # concatenate attention weights -> (#layers, #heads, L, T)
        att_ws = paddle.stack(att_ws, axis=0)

        return outs, probs, att_ws

    def _add_first_frame_and_remove_last_frame(
            self, ys: paddle.Tensor) -> paddle.Tensor:
        ys_in = paddle.concat(
            [paddle.zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], axis=1)
        return ys_in

    def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
        """Make masks for self-attention.

651 652
        Args:
            ilens(Tensor): Batch of lengths (B,).
H
Hui Zhang 已提交
653

654 655
        Returns:
            Tensor: Mask tensor for self-attention. dtype=paddle.bool
H
Hui Zhang 已提交
656

657 658 659 660 661
        Examples:
            >>> ilens = [5, 3]
            >>> self._source_mask(ilens)
            tensor([[[1, 1, 1, 1, 1],
                        [1, 1, 1, 0, 0]]]) bool
H
Hui Zhang 已提交
662 663 664 665 666 667 668 669

        """
        x_masks = make_non_pad_mask(ilens)
        return x_masks.unsqueeze(-2)

    def _target_mask(self, olens: paddle.Tensor) -> paddle.Tensor:
        """Make masks for masked self-attention.

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        Args:
            olens (Tensor(int64)): Batch of lengths (B,).

        Returns:
            Tensor: Mask tensor for masked self-attention.

        Examples:
            >>> olens = [5, 3]
            >>> self._target_mask(olens)
            tensor([[[1, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0],
                        [1, 1, 1, 0, 0],
                        [1, 1, 1, 1, 0],
                        [1, 1, 1, 1, 1]],
                    [[1, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0],
                        [1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 0],
                        [1, 1, 1, 0, 0]]], dtype=paddle.uint8)
H
Hui Zhang 已提交
689 690 691 692 693 694 695 696

        """
        y_masks = make_non_pad_mask(olens)
        s_masks = subsequent_mask(y_masks.shape[-1]).unsqueeze(0)
        return paddle.logical_and(y_masks.unsqueeze(-2), s_masks)

    def _integrate_with_spk_embed(self,
                                  hs: paddle.Tensor,
小湉湉's avatar
小湉湉 已提交
697
                                  spk_emb: paddle.Tensor) -> paddle.Tensor:
H
Hui Zhang 已提交
698 699
        """Integrate speaker embedding with hidden states.

700 701 702 703 704 705
        Args:
            hs(Tensor): Batch of hidden state sequences (B, Tmax, adim).
            spk_emb(Tensor): Batch of speaker embeddings (B, spk_embed_dim).

        Returns:
            Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
H
Hui Zhang 已提交
706 707 708 709

        """
        if self.spk_embed_integration_type == "add":
            # apply projection and then add to hidden states
小湉湉's avatar
小湉湉 已提交
710 711
            spk_emb = self.projection(F.normalize(spk_emb))
            hs = hs + spk_emb.unsqueeze(1)
H
Hui Zhang 已提交
712 713
        elif self.spk_embed_integration_type == "concat":
            # concat hidden states with spk embeds and then apply projection
小湉湉's avatar
小湉湉 已提交
714 715 716
            spk_emb = F.normalize(spk_emb).unsqueeze(1).expand(-1, hs.shape[1],
                                                               -1)
            hs = self.projection(paddle.concat([hs, spk_emb], axis=-1))
H
Hui Zhang 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
        else:
            raise NotImplementedError("support only add or concat.")

        return hs


class TransformerTTSInference(nn.Layer):
    def __init__(self, normalizer, model):
        super().__init__()
        self.normalizer = normalizer
        self.acoustic_model = model

    def forward(self, text, spk_id=None):
        normalized_mel = self.acoustic_model.inference(text)[0]
        logmel = self.normalizer.inverse(normalized_mel)
        return logmel