shardlists.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#
# Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# This file is part of the WebDataset library.
# See the LICENSE file for licensing terms (BSD-style).
#

# Modified from https://github.com/webdataset/webdataset

"""Train PyTorch models directly from POSIX tar archive.

Code works locally or over HTTP connections.
"""

import os, random, sys, time
from dataclasses import dataclass, field
from itertools import islice
from typing import List

import braceexpand, yaml

from . import utils
from .filters import pipelinefilter
from .paddle_utils import IterableDataset


27 28
from ..utils.log import Logger
logger = Logger(__name__)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def expand_urls(urls):
    if isinstance(urls, str):
        urllist = urls.split("::")
        result = []
        for url in urllist:
            result.extend(braceexpand.braceexpand(url))
        return result
    else:
        return list(urls)


class SimpleShardList(IterableDataset):
    """An iterable dataset yielding a list of urls."""

    def __init__(self, urls, seed=None):
        """Iterate through the list of shards.

        :param urls: a list of URLs as a Python list or brace notation string
        """
        super().__init__()
        urls = expand_urls(urls)
        self.urls = urls
        assert isinstance(self.urls[0], str)
        self.seed = seed

    def __len__(self):
        return len(self.urls)

    def __iter__(self):
        """Return an iterator over the shards."""
        urls = self.urls.copy()
        if self.seed is not None:
            random.Random(self.seed).shuffle(urls)
        for url in urls:
            yield dict(url=url)


def split_by_node(src, group=None):
    rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
H
huangyuxin 已提交
68
    logger.info(f"world_size:{world_size}, rank:{rank}")
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    if world_size > 1:
        for s in islice(src, rank, None, world_size):
            yield s
    else:
        for s in src:
            yield s


def single_node_only(src, group=None):
    rank, world_size, worker, num_workers = utils.paddle_worker_info(group=group)
    if world_size > 1:
        raise ValueError("input pipeline needs to be reconfigured for multinode training")
    for s in src:
        yield s


def split_by_worker(src):
    rank, world_size, worker, num_workers = utils.paddle_worker_info()
H
huangyuxin 已提交
87
    logger.info(f"num_workers:{num_workers}, worker:{worker}")
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    if num_workers > 1:
        for s in islice(src, worker, None, num_workers):
            yield s
    else:
        for s in src:
            yield s


def resampled_(src, n=sys.maxsize):
    import random

    seed = time.time()
    try:
        seed = open("/dev/random", "rb").read(20)
    except Exception as exn:
        print(repr(exn)[:50], file=sys.stderr)
    rng = random.Random(seed)
    print("# resampled loading", file=sys.stderr)
    items = list(src)
    print(f"# resampled got {len(items)} samples, yielding {n}", file=sys.stderr)
    for i in range(n):
        yield rng.choice(items)


resampled = pipelinefilter(resampled_)


def non_empty(src):
    count = 0
    for s in src:
        yield s
        count += 1
    if count == 0:
        raise ValueError("pipeline stage received no data at all and this was declared as an error")


@dataclass
class MSSource:
    """Class representing a data source."""

    name: str = ""
    perepoch: int = -1
    resample: bool = False
    urls: List[str] = field(default_factory=list)


default_rng = random.Random()


def expand(s):
    return os.path.expanduser(os.path.expandvars(s))


class MultiShardSample(IterableDataset):
    def __init__(self, fname):
        """Construct a shardlist from multiple sources using a YAML spec."""
        self.epoch = -1
class MultiShardSample(IterableDataset):
    def __init__(self, fname):
        """Construct a shardlist from multiple sources using a YAML spec."""
        self.epoch = -1
        self.parse_spec(fname)

    def parse_spec(self, fname):
        self.rng = default_rng  # capture default_rng if we fork
        if isinstance(fname, dict):
            spec = fname
            fname = "{dict}"
        else:
            with open(fname) as stream:
                spec = yaml.safe_load(stream)
        assert set(spec.keys()).issubset(set("prefix datasets buckets".split())), list(spec.keys())
        prefix = expand(spec.get("prefix", ""))
        self.sources = []
        for ds in spec["datasets"]:
            assert set(ds.keys()).issubset(set("buckets name shards resample choose".split())), list(
                ds.keys()
            )
            buckets = ds.get("buckets", spec.get("buckets", []))
            if isinstance(buckets, str):
                buckets = [buckets]
            buckets = [expand(s) for s in buckets]
            if buckets == []:
                buckets = [""]
            assert len(buckets) == 1, f"{buckets}: FIXME support for multiple buckets unimplemented"
            bucket = buckets[0]
            name = ds.get("name", "@" + bucket)
            urls = ds["shards"]
            if isinstance(urls, str):
                urls = [urls]
            # urls = [u for url in urls for u in braceexpand.braceexpand(url)]
            urls = [
                prefix + os.path.join(bucket, u) for url in urls for u in braceexpand.braceexpand(expand(url))
            ]
            resample = ds.get("resample", -1)
            nsample = ds.get("choose", -1)
            if nsample > len(urls):
                raise ValueError(f"perepoch {nsample} must be no greater than the number of shards")
            if (nsample > 0) and (resample > 0):
                raise ValueError("specify only one of perepoch or choose")
            entry = MSSource(name=name, urls=urls, perepoch=nsample, resample=resample)
            self.sources.append(entry)
            print(f"# {name} {len(urls)} {nsample}", file=sys.stderr)

    def set_epoch(self, seed):
        """Set the current epoch (for consistent shard selection among nodes)."""
        self.rng = random.Random(seed)

    def get_shards_for_epoch(self):
        result = []
        for source in self.sources:
            if source.resample > 0:
                # sample with replacement
                l = self.rng.choices(source.urls, k=source.resample)
            elif source.perepoch > 0:
                # sample without replacement
                l = list(source.urls)
                self.rng.shuffle(l)
                l = l[: source.perepoch]
            else:
                l = list(source.urls)
            result += l
        self.rng.shuffle(result)
        return result

    def __iter__(self):
        shards = self.get_shards_for_epoch()
        for shard in shards:
            yield dict(url=shard)


def shardspec(spec):
    if spec.endswith(".yaml"):
        return MultiShardSample(spec)
    else:
        return SimpleShardList(spec)


class ResampledShards(IterableDataset):
    """An iterable dataset yielding a list of urls."""

    def __init__(
        self,
        urls,
        nshards=sys.maxsize,
        worker_seed=None,
        deterministic=False,
    ):
        """Sample shards from the shard list with replacement.

        :param urls: a list of URLs as a Python list or brace notation string
        """
        super().__init__()
        urls = expand_urls(urls)
        self.urls = urls
        assert isinstance(self.urls[0], str)
        self.nshards = nshards
        self.worker_seed = utils.paddle_worker_seed if worker_seed is None else worker_seed
        self.deterministic = deterministic
        self.epoch = -1

    def __iter__(self):
        """Return an iterator over the shards."""
        self.epoch += 1
        if self.deterministic:
            seed = utils.make_seed(self.worker_seed(), self.epoch)
        else:
            seed = utils.make_seed(self.worker_seed(), self.epoch, os.getpid(), time.time_ns(), os.urandom(4))
        if os.environ.get("WDS_SHOW_SEED", "0") == "1":
            print(f"# ResampledShards seed {seed}")
        self.rng = random.Random(seed)
        for _ in range(self.nshards):
            index = self.rng.randint(0, len(self.urls) - 1)
            yield dict(url=self.urls[index])