u2.py 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""U2 ASR Model
H
Hui Zhang 已提交
15
Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
(https://arxiv.org/pdf/2012.05481.pdf)
"""
import sys
import time
from collections import defaultdict
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple

import paddle
from paddle import jit
from paddle import nn
from yacs.config import CfgNode

from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.frontend.utility import load_cmvn
from deepspeech.modules.cmvn import GlobalCMVN
from deepspeech.modules.ctc import CTCDecoder
from deepspeech.modules.decoder import TransformerDecoder
from deepspeech.modules.encoder import ConformerEncoder
from deepspeech.modules.encoder import TransformerEncoder
from deepspeech.modules.loss import LabelSmoothingLoss
from deepspeech.modules.mask import make_pad_mask
from deepspeech.modules.mask import mask_finished_preds
from deepspeech.modules.mask import mask_finished_scores
from deepspeech.modules.mask import subsequent_mask
from deepspeech.utils import checkpoint
from deepspeech.utils import layer_tools
from deepspeech.utils.ctc_utils import remove_duplicates_and_blank
from deepspeech.utils.log import Log
from deepspeech.utils.tensor_utils import add_sos_eos
from deepspeech.utils.tensor_utils import pad_sequence
from deepspeech.utils.tensor_utils import th_accuracy
from deepspeech.utils.utility import log_add
H
Hui Zhang 已提交
51
from deepspeech.utils.utility import UpdateConfig
52 53 54 55 56 57

__all__ = ["U2Model", "U2InferModel"]

logger = Log(__name__).getlog()


H
Hui Zhang 已提交
58
class U2BaseModel(nn.Layer):
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    """CTC-Attention hybrid Encoder-Decoder model"""

    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # network architecture
        default = CfgNode()
        # allow add new item when merge_with_file
        default.cmvn_file = ""
        default.cmvn_file_type = "json"
        default.input_dim = 0
        default.output_dim = 0
        # encoder related
        default.encoder = 'transformer'
        default.encoder_conf = CfgNode(
            dict(
                output_size=256,  # dimension of attention
                attention_heads=4,
                linear_units=2048,  # the number of units of position-wise feed forward
                num_blocks=12,  # the number of encoder blocks
                dropout_rate=0.1,
                positional_dropout_rate=0.1,
                attention_dropout_rate=0.0,
                input_layer='conv2d',  # encoder input type, you can chose conv2d, conv2d6 and conv2d8
                normalize_before=True,
                # use_cnn_module=True,
                # cnn_module_kernel=15,
                # activation_type='swish',
                # pos_enc_layer_type='rel_pos',
H
Hui Zhang 已提交
87
                # selfattention_layer_type='rel_selfattn',
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
            ))
        # decoder related
        default.decoder = 'transformer'
        default.decoder_conf = CfgNode(
            dict(
                attention_heads=4,
                linear_units=2048,
                num_blocks=6,
                dropout_rate=0.1,
                positional_dropout_rate=0.1,
                self_attention_dropout_rate=0.0,
                src_attention_dropout_rate=0.0, ))
        # hybrid CTC/attention
        default.model_conf = CfgNode(
            dict(
                ctc_weight=0.3,
                lsm_weight=0.1,  # label smoothing option
                length_normalized_loss=False, ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self,
                 vocab_size: int,
                 encoder: TransformerEncoder,
                 decoder: TransformerDecoder,
                 ctc: CTCDecoder,
                 ctc_weight: float=0.5,
                 ignore_id: int=IGNORE_ID,
                 lsm_weight: float=0.0,
H
Hui Zhang 已提交
119 120
                 length_normalized_loss: bool=False,
                 **kwargs):
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        assert 0.0 <= ctc_weight <= 1.0, ctc_weight

        super().__init__()
        # note that eos is the same as sos (equivalent ID)
        self.sos = vocab_size - 1
        self.eos = vocab_size - 1
        self.vocab_size = vocab_size
        self.ignore_id = ignore_id
        self.ctc_weight = ctc_weight

        self.encoder = encoder
        self.decoder = decoder
        self.ctc = ctc
        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss, )

    def forward(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            text: paddle.Tensor,
            text_lengths: paddle.Tensor,
    ) -> Tuple[Optional[paddle.Tensor], Optional[paddle.Tensor], Optional[
            paddle.Tensor]]:
        """Frontend + Encoder + Decoder + Calc loss
        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
            text: (Batch, Length)
            text_lengths: (Batch,)
        Returns:
            total_loss, attention_loss, ctc_loss
        """
        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
                text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
                                         text.shape, text_lengths.shape)
        # 1. Encoder
        start = time.time()
        encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
        encoder_time = time.time() - start
        #logger.debug(f"encoder time: {encoder_time}")
167 168 169 170
        #TODO(Hui Zhang): sum not support bool type
        #encoder_out_lens = encoder_mask.squeeze(1).sum(1)  #[B, 1, T] -> [B]
        encoder_out_lens = encoder_mask.squeeze(1).cast(paddle.int64).sum(
            1)  #[B, 1, T] -> [B]
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        # 2a. Attention-decoder branch
        loss_att = None
        if self.ctc_weight != 1.0:
            start = time.time()
            loss_att, acc_att = self._calc_att_loss(encoder_out, encoder_mask,
                                                    text, text_lengths)
            decoder_time = time.time() - start
            #logger.debug(f"decoder time: {decoder_time}")

        # 2b. CTC branch
        loss_ctc = None
        if self.ctc_weight != 0.0:
            start = time.time()
            loss_ctc = self.ctc(encoder_out, encoder_out_lens, text,
                                text_lengths)
            ctc_time = time.time() - start
            #logger.debug(f"ctc time: {ctc_time}")

        if loss_ctc is None:
            loss = loss_att
        elif loss_att is None:
            loss = loss_ctc
        else:
            loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
        return loss, loss_att, loss_ctc

    def _calc_att_loss(
            self,
            encoder_out: paddle.Tensor,
            encoder_mask: paddle.Tensor,
            ys_pad: paddle.Tensor,
            ys_pad_lens: paddle.Tensor, ) -> Tuple[paddle.Tensor, float]:
        """Calc attention loss.

        Args:
            encoder_out (paddle.Tensor): [B, Tmax, D]
            encoder_mask (paddle.Tensor): [B, 1, Tmax]
            ys_pad (paddle.Tensor): [B, Umax]
            ys_pad_lens (paddle.Tensor): [B]

        Returns:
            Tuple[paddle.Tensor, float]: attention_loss, accuracy rate
        """
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
                                            self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # 1. Forward decoder
        decoder_out, _ = self.decoder(encoder_out, encoder_mask, ys_in_pad,
                                      ys_in_lens)

        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id, )
        return loss_att, acc_att

    def _forward_encoder(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            simulate_streaming: bool=False,
    ) -> Tuple[paddle.Tensor, paddle.Tensor]:
        """Encoder pass.

        Args:
            speech (paddle.Tensor): [B, Tmax, D]
            speech_lengths (paddle.Tensor): [B]
            decoding_chunk_size (int, optional): chuck size. Defaults to -1.
            num_decoding_left_chunks (int, optional): nums chunks. Defaults to -1.
            simulate_streaming (bool, optional): streaming or not. Defaults to False.

        Returns:
H
Hui Zhang 已提交
249 250
            Tuple[paddle.Tensor, paddle.Tensor]:
                encoder hiddens (B, Tmax, D),
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                encoder hiddens mask (B, 1, Tmax).
        """
        # Let's assume B = batch_size
        # 1. Encoder
        if simulate_streaming and decoding_chunk_size > 0:
            encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
                speech,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks
            )  # (B, maxlen, encoder_dim)
        else:
            encoder_out, encoder_mask = self.encoder(
                speech,
                speech_lengths,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks
            )  # (B, maxlen, encoder_dim)
        return encoder_out, encoder_mask

    def recognize(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            beam_size: int=10,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            simulate_streaming: bool=False, ) -> paddle.Tensor:
        """ Apply beam search on attention decoder
        Args:
            speech (paddle.Tensor): (batch, max_len, feat_dim)
            speech_length (paddle.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            paddle.Tensor: decoding result, (batch, max_result_len)
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        device = speech.place
        batch_size = speech.shape[0]

        # Let's assume B = batch_size and N = beam_size
        # 1. Encoder
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks,
            simulate_streaming)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
304 305
        maxlen = encoder_out.shape[1]
        encoder_dim = encoder_out.shape[2]
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        running_size = batch_size * beam_size
        encoder_out = encoder_out.unsqueeze(1).repeat(1, beam_size, 1, 1).view(
            running_size, maxlen, encoder_dim)  # (B*N, maxlen, encoder_dim)
        encoder_mask = encoder_mask.unsqueeze(1).repeat(
            1, beam_size, 1, 1).view(running_size, 1,
                                     maxlen)  # (B*N, 1, max_len)

        hyps = paddle.ones(
            [running_size, 1], dtype=paddle.long).fill_(self.sos)  # (B*N, 1)
        # log scale score
        scores = paddle.to_tensor(
            [0.0] + [-float('inf')] * (beam_size - 1), dtype=paddle.float)
        scores = scores.to(device).repeat(batch_size).unsqueeze(1).to(
            device)  # (B*N, 1)
        end_flag = paddle.zeros_like(scores, dtype=paddle.bool)  # (B*N, 1)
        cache: Optional[List[paddle.Tensor]] = None
        # 2. Decoder forward step by step
        for i in range(1, maxlen + 1):
            # Stop if all batch and all beam produce eos
325 326
            # TODO(Hui Zhang): if end_flag.sum() == running_size:
            if end_flag.cast(paddle.int64).sum() == running_size:
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
                break

            # 2.1 Forward decoder step
            hyps_mask = subsequent_mask(i).unsqueeze(0).repeat(
                running_size, 1, 1).to(device)  # (B*N, i, i)
            # logp: (B*N, vocab)
            logp, cache = self.decoder.forward_one_step(
                encoder_out, encoder_mask, hyps, hyps_mask, cache)

            # 2.2 First beam prune: select topk best prob at current time
            top_k_logp, top_k_index = logp.topk(beam_size)  # (B*N, N)
            top_k_logp = mask_finished_scores(top_k_logp, end_flag)
            top_k_index = mask_finished_preds(top_k_index, end_flag, self.eos)

            # 2.3 Seconde beam prune: select topk score with history
            scores = scores + top_k_logp  # (B*N, N), broadcast add
            scores = scores.view(batch_size, beam_size * beam_size)  # (B, N*N)
            scores, offset_k_index = scores.topk(k=beam_size)  # (B, N)
            scores = scores.view(-1, 1)  # (B*N, 1)

            # 2.4. Compute base index in top_k_index,
            # regard top_k_index as (B*N*N),regard offset_k_index as (B*N),
            # then find offset_k_index in top_k_index
            base_k_index = paddle.arange(batch_size).view(-1, 1).repeat(
                1, beam_size)  # (B, N)
            base_k_index = base_k_index * beam_size * beam_size
            best_k_index = base_k_index.view(-1) + offset_k_index.view(
                -1)  # (B*N)

            # 2.5 Update best hyps
            best_k_pred = paddle.index_select(
                top_k_index.view(-1), index=best_k_index, axis=0)  # (B*N)
            best_hyps_index = best_k_index // beam_size
            last_best_k_hyps = paddle.index_select(
                hyps, index=best_hyps_index, axis=0)  # (B*N, i)
            hyps = paddle.cat(
                (last_best_k_hyps, best_k_pred.view(-1, 1)),
                dim=1)  # (B*N, i+1)

            # 2.6 Update end flag
            end_flag = paddle.eq(hyps[:, -1], self.eos).view(-1, 1)

        # 3. Select best of best
        scores = scores.view(batch_size, beam_size)
        # TODO: length normalization
        best_index = paddle.argmax(scores, axis=-1).long()  # (B)
        best_hyps_index = best_index + paddle.arange(
            batch_size, dtype=paddle.long) * beam_size
        best_hyps = paddle.index_select(hyps, index=best_hyps_index, axis=0)
        best_hyps = best_hyps[:, 1:]
        return best_hyps

    def ctc_greedy_search(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            simulate_streaming: bool=False, ) -> List[List[int]]:
        """ Apply CTC greedy search
        Args:
            speech (paddle.Tensor): (batch, max_len, feat_dim)
            speech_length (paddle.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            List[List[int]]: best path result
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        batch_size = speech.shape[0]
H
Hui Zhang 已提交
404

405 406 407 408 409 410
        # Let's assume B = batch_size
        # encoder_out: (B, maxlen, encoder_dim)
        # encoder_mask: (B, 1, Tmax)
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks, simulate_streaming)
H
Hui Zhang 已提交
411
        maxlen = encoder_out.shape[1]
412 413 414
        # (TODO Hui Zhang): bool no support reduce_sum
        # encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        encoder_out_lens = encoder_mask.squeeze(1).astype(paddle.int).sum(1)
415
        ctc_probs = self.ctc.log_softmax(encoder_out)  # (B, maxlen, vocab_size)
H
Hui Zhang 已提交
416

417 418 419 420
        topk_prob, topk_index = ctc_probs.topk(1, axis=2)  # (B, maxlen, 1)
        topk_index = topk_index.view(batch_size, maxlen)  # (B, maxlen)
        pad_mask = make_pad_mask(encoder_out_lens)  # (B, maxlen)
        topk_index = topk_index.masked_fill_(pad_mask, self.eos)  # (B, maxlen)
H
Hui Zhang 已提交
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        hyps = [hyp.tolist() for hyp in topk_index]
        hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
        return hyps

    def _ctc_prefix_beam_search(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            beam_size: int,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            simulate_streaming: bool=False,
            blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]:
        """ CTC prefix beam search inner implementation
        Args:
            speech (paddle.Tensor): (batch, max_len, feat_dim)
            speech_length (paddle.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood)
            paddle.Tensor: encoder output, (1, max_len, encoder_dim),
                it will be used for rescoring in attention rescoring mode
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        batch_size = speech.shape[0]
        # For CTC prefix beam search, we only support batch_size=1
        assert batch_size == 1
H
Hui Zhang 已提交
457

458 459 460 461 462 463
        # Let's assume B = batch_size and N = beam_size
        # 1. Encoder forward and get CTC score
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks,
            simulate_streaming)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
464
        maxlen = encoder_out.shape[1]
465 466
        ctc_probs = self.ctc.log_softmax(encoder_out)  # (1, maxlen, vocab_size)
        ctc_probs = ctc_probs.squeeze(0)
H
Hui Zhang 已提交
467

468
        # cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
H
Hui Zhang 已提交
469
        # blank_ending_score and  none_blank_ending_score in ln domain
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        cur_hyps = [(tuple(), (0.0, -float('inf')))]
        # 2. CTC beam search step by step
        for t in range(0, maxlen):
            logp = ctc_probs[t]  # (vocab_size,)
            # key: prefix, value (pb, pnb), default value(-inf, -inf)
            next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
            # 2.1 First beam prune: select topk best
            top_k_logp, top_k_index = logp.topk(beam_size)  # (beam_size,)
            for s in top_k_index:
                s = s.item()
                ps = logp[s].item()
                for prefix, (pb, pnb) in cur_hyps:
                    last = prefix[-1] if len(prefix) > 0 else None
                    if s == blank_id:  # blank
                        n_pb, n_pnb = next_hyps[prefix]
                        n_pb = log_add([n_pb, pb + ps, pnb + ps])
                        next_hyps[prefix] = (n_pb, n_pnb)
                    elif s == last:
                        #  Update *ss -> *s;
                        n_pb, n_pnb = next_hyps[prefix]
                        n_pnb = log_add([n_pnb, pnb + ps])
                        next_hyps[prefix] = (n_pb, n_pnb)
                        # Update *s-s -> *ss, - is for blank
                        n_prefix = prefix + (s, )
                        n_pb, n_pnb = next_hyps[n_prefix]
                        n_pnb = log_add([n_pnb, pb + ps])
                        next_hyps[n_prefix] = (n_pb, n_pnb)
                    else:
                        n_prefix = prefix + (s, )
                        n_pb, n_pnb = next_hyps[n_prefix]
                        n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
                        next_hyps[n_prefix] = (n_pb, n_pnb)

            # 2.2 Second beam prune
            next_hyps = sorted(
                next_hyps.items(),
                key=lambda x: log_add(list(x[1])),
                reverse=True)
            cur_hyps = next_hyps[:beam_size]
H
Hui Zhang 已提交
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
        return hyps, encoder_out

    def ctc_prefix_beam_search(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            beam_size: int,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            simulate_streaming: bool=False, ) -> List[int]:
        """ Apply CTC prefix beam search
        Args:
            speech (paddle.Tensor): (batch, max_len, feat_dim)
            speech_length (paddle.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            List[int]: CTC prefix beam search nbest results
        """
        hyps, _ = self._ctc_prefix_beam_search(
            speech, speech_lengths, beam_size, decoding_chunk_size,
            num_decoding_left_chunks, simulate_streaming)
        return hyps[0][0]

    def attention_rescoring(
            self,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            beam_size: int,
            decoding_chunk_size: int=-1,
            num_decoding_left_chunks: int=-1,
            ctc_weight: float=0.0,
            simulate_streaming: bool=False, ) -> List[int]:
        """ Apply attention rescoring decoding, CTC prefix beam search
            is applied first to get nbest, then we resoring the nbest on
            attention decoder with corresponding encoder out
        Args:
            speech (paddle.Tensor): (batch, max_len, feat_dim)
            speech_length (paddle.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            List[int]: Attention rescoring result
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        device = speech.place
        batch_size = speech.shape[0]
        # For attention rescoring we only support batch_size=1
        assert batch_size == 1
H
Hui Zhang 已提交
573 574

        # len(hyps) = beam_size, encoder_out: (1, maxlen, encoder_dim)
575 576 577 578
        hyps, encoder_out = self._ctc_prefix_beam_search(
            speech, speech_lengths, beam_size, decoding_chunk_size,
            num_decoding_left_chunks, simulate_streaming)
        assert len(hyps) == beam_size
H
Hui Zhang 已提交
579

580 581 582 583 584 585 586 587 588
        hyps_pad = pad_sequence([
            paddle.to_tensor(hyp[0], place=device, dtype=paddle.long)
            for hyp in hyps
        ], True, self.ignore_id)  # (beam_size, max_hyps_len)
        hyps_lens = paddle.to_tensor(
            [len(hyp[0]) for hyp in hyps], place=device,
            dtype=paddle.long)  # (beam_size,)
        hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
        hyps_lens = hyps_lens + 1  # Add <sos> at begining
H
Hui Zhang 已提交
589

590 591
        encoder_out = encoder_out.repeat(beam_size, 1, 1)
        encoder_mask = paddle.ones(
H
Hui Zhang 已提交
592
            (beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
593 594 595
        decoder_out, _ = self.decoder(
            encoder_out, encoder_mask, hyps_pad,
            hyps_lens)  # (beam_size, max_hyps_len, vocab_size)
H
Hui Zhang 已提交
596
        # ctc score in ln domain
597 598
        decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
        decoder_out = decoder_out.numpy()
H
Hui Zhang 已提交
599

600 601 602
        # Only use decoder score for rescoring
        best_score = -float('inf')
        best_index = 0
H
Hui Zhang 已提交
603
        # hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
604 605 606 607
        for i, hyp in enumerate(hyps):
            score = 0.0
            for j, w in enumerate(hyp[0]):
                score += decoder_out[i][j][w]
H
Hui Zhang 已提交
608
            # last decoder output token is `eos`, for laste decoder input token.
609
            score += decoder_out[i][len(hyp[0])][self.eos]
H
Hui Zhang 已提交
610
            # add ctc score (which in ln domain)
611 612 613 614 615 616
            score += hyp[1] * ctc_weight
            if score > best_score:
                best_score = score
                best_index = i
        return hyps[best_index][0]

H
Hui Zhang 已提交
617
    #@jit.to_static
618 619 620 621 622 623
    def subsampling_rate(self) -> int:
        """ Export interface for c++ call, return subsampling_rate of the
            model
        """
        return self.encoder.embed.subsampling_rate

H
Hui Zhang 已提交
624
    #@jit.to_static
625 626 627 628 629
    def right_context(self) -> int:
        """ Export interface for c++ call, return right_context of the model
        """
        return self.encoder.embed.right_context

H
Hui Zhang 已提交
630
    #@jit.to_static
631 632 633 634 635
    def sos_symbol(self) -> int:
        """ Export interface for c++ call, return sos symbol id of the model
        """
        return self.sos

H
Hui Zhang 已提交
636
    #@jit.to_static
637 638 639 640 641
    def eos_symbol(self) -> int:
        """ Export interface for c++ call, return eos symbol id of the model
        """
        return self.eos

H
Hui Zhang 已提交
642
    @jit.to_static
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
    def forward_encoder_chunk(
            self,
            xs: paddle.Tensor,
            offset: int,
            required_cache_size: int,
            subsampling_cache: Optional[paddle.Tensor]=None,
            elayers_output_cache: Optional[List[paddle.Tensor]]=None,
            conformer_cnn_cache: Optional[List[paddle.Tensor]]=None,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, List[paddle.Tensor], List[
            paddle.Tensor]]:
        """ Export interface for c++ call, give input chunk xs, and return
            output from time 0 to current chunk.
        Args:
            xs (paddle.Tensor): chunk input
            subsampling_cache (Optional[paddle.Tensor]): subsampling cache
            elayers_output_cache (Optional[List[paddle.Tensor]]):
                transformer/conformer encoder layers output cache
            conformer_cnn_cache (Optional[List[paddle.Tensor]]): conformer
                cnn cache
        Returns:
            paddle.Tensor: output, it ranges from time 0 to current chunk.
            paddle.Tensor: subsampling cache
            List[paddle.Tensor]: attention cache
            List[paddle.Tensor]: conformer cnn cache
        """
        return self.encoder.forward_chunk(
            xs, offset, required_cache_size, subsampling_cache,
            elayers_output_cache, conformer_cnn_cache)

H
Hui Zhang 已提交
672
    # @jit.to_static
673 674 675 676
    def ctc_activation(self, xs: paddle.Tensor) -> paddle.Tensor:
        """ Export interface for c++ call, apply linear transform and log
            softmax before ctc
        Args:
H
Hui Zhang 已提交
677
            xs (paddle.Tensor): encoder output, (B, T, D)
678 679 680 681 682
        Returns:
            paddle.Tensor: activation before ctc
        """
        return self.ctc.log_softmax(xs)

H
Hui Zhang 已提交
683
    @jit.to_static
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    def forward_attention_decoder(
            self,
            hyps: paddle.Tensor,
            hyps_lens: paddle.Tensor,
            encoder_out: paddle.Tensor, ) -> paddle.Tensor:
        """ Export interface for c++ call, forward decoder with multiple
            hypothesis from ctc prefix beam search and one encoder output
        Args:
            hyps (paddle.Tensor): hyps from ctc prefix beam search, already
                pad sos at the begining, (B, T)
            hyps_lens (paddle.Tensor): length of each hyp in hyps, (B)
            encoder_out (paddle.Tensor): corresponding encoder output, (B=1, T, D)
        Returns:
            paddle.Tensor: decoder output, (B, L)
        """
H
Hui Zhang 已提交
699 700 701
        assert encoder_out.shape[0] == 1
        num_hyps = hyps.shape[0]
        assert hyps_lens.shape[0] == num_hyps
702 703 704
        encoder_out = encoder_out.repeat(num_hyps, 1, 1)
        # (B, 1, T)
        encoder_mask = paddle.ones(
H
Hui Zhang 已提交
705
            [num_hyps, 1, encoder_out.shape[1]], dtype=paddle.bool)
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        # (num_hyps, max_hyps_len, vocab_size)
        decoder_out, _ = self.decoder(encoder_out, encoder_mask, hyps,
                                      hyps_lens)
        decoder_out = paddle.nn.functional.log_softmax(decoder_out, dim=-1)
        return decoder_out

    @paddle.no_grad()
    def decode(self,
               feats: paddle.Tensor,
               feats_lengths: paddle.Tensor,
               text_feature: Dict[str, int],
               decoding_method: str,
               lang_model_path: str,
               beam_alpha: float,
               beam_beta: float,
               beam_size: int,
               cutoff_prob: float,
               cutoff_top_n: int,
               num_processes: int,
               ctc_weight: float=0.0,
               decoding_chunk_size: int=-1,
               num_decoding_left_chunks: int=-1,
               simulate_streaming: bool=False):
        """u2 decoding.

        Args:
            feats (Tenosr): audio features, (B, T, D)
            feats_lengths (Tenosr): (B)
            text_feature (TextFeaturizer): text feature object.
H
Hui Zhang 已提交
735 736
            decoding_method (str): decoding mode, e.g.
                    'attention', 'ctc_greedy_search',
737 738 739 740 741 742 743
                    'ctc_prefix_beam_search', 'attention_rescoring'
            lang_model_path (str): lm path.
            beam_alpha (float): lm weight.
            beam_beta (float): length penalty.
            beam_size (int): beam size for search
            cutoff_prob (float): for prune.
            cutoff_top_n (int): for prune.
H
Hui Zhang 已提交
744
            num_processes (int):
745 746 747 748
            ctc_weight (float, optional): ctc weight for attention rescoring decode mode. Defaults to 0.0.
            decoding_chunk_size (int, optional): decoding chunk size. Defaults to -1.
                    <0: for decoding, use full chunk.
                    >0: for decoding, use fixed chunk size as set.
H
Hui Zhang 已提交
749 750
                    0: used for training, it's prohibited here.
            num_decoding_left_chunks (int, optional):
751 752 753 754 755
                    number of left chunks for decoding. Defaults to -1.
            simulate_streaming (bool, optional): simulate streaming inference. Defaults to False.

        Raises:
            ValueError: when not support decoding_method.
H
Hui Zhang 已提交
756

757 758 759
        Returns:
            List[List[int]]: transcripts.
        """
H
Hui Zhang 已提交
760
        batch_size = feats.shape[0]
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        if decoding_method in ['ctc_prefix_beam_search',
                               'attention_rescoring'] and batch_size > 1:
            logger.fatal(
                f'decoding mode {decoding_method} must be running with batch_size == 1'
            )
            sys.exit(1)

        if decoding_method == 'attention':
            hyps = self.recognize(
                feats,
                feats_lengths,
                beam_size=beam_size,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                simulate_streaming=simulate_streaming)
            hyps = [hyp.tolist() for hyp in hyps]
        elif decoding_method == 'ctc_greedy_search':
            hyps = self.ctc_greedy_search(
                feats,
                feats_lengths,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                simulate_streaming=simulate_streaming)
        # ctc_prefix_beam_search and attention_rescoring only return one
        # result in List[int], change it to List[List[int]] for compatible
        # with other batch decoding mode
        elif decoding_method == 'ctc_prefix_beam_search':
H
Hui Zhang 已提交
788
            assert feats.shape[0] == 1
789 790 791 792 793 794 795 796 797
            hyp = self.ctc_prefix_beam_search(
                feats,
                feats_lengths,
                beam_size,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                simulate_streaming=simulate_streaming)
            hyps = [hyp]
        elif decoding_method == 'attention_rescoring':
H
Hui Zhang 已提交
798
            assert feats.shape[0] == 1
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
            hyp = self.attention_rescoring(
                feats,
                feats_lengths,
                beam_size,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                ctc_weight=ctc_weight,
                simulate_streaming=simulate_streaming)
            hyps = [hyp]
        else:
            raise ValueError(f"Not support decoding method: {decoding_method}")

        res = [text_feature.defeaturize(hyp) for hyp in hyps]
        return res


class U2Model(U2BaseModel):
    def __init__(self, configs: dict):
        vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)

        super().__init__(
            vocab_size=vocab_size,
            encoder=encoder,
            decoder=decoder,
            ctc=ctc,
            **configs['model_conf'])

    @classmethod
    def _init_from_config(cls, configs: dict):
        """init sub module for model.

        Args:
            configs (dict): config dict.

        Raises:
            ValueError: raise when using not support encoder type.

        Returns:
H
Hui Zhang 已提交
837
            int, nn.Layer, nn.Layer, nn.Layer: vocab size, encoder, decoder, ctc
838
        """
H
Hui Zhang 已提交
839
        # cmvn
840 841 842 843 844 845 846 847 848
        if configs['cmvn_file'] is not None:
            mean, istd = load_cmvn(configs['cmvn_file'],
                                   configs['cmvn_file_type'])
            global_cmvn = GlobalCMVN(
                paddle.to_tensor(mean, dtype=paddle.float),
                paddle.to_tensor(istd, dtype=paddle.float))
        else:
            global_cmvn = None

H
Hui Zhang 已提交
849
        # input & output dim
850 851 852 853 854
        input_dim = configs['input_dim']
        vocab_size = configs['output_dim']
        assert input_dim != 0, input_dim
        assert vocab_size != 0, vocab_size

H
Hui Zhang 已提交
855
        # encoder
856 857 858 859 860 861 862 863 864 865 866
        encoder_type = configs.get('encoder', 'transformer')
        logger.info(f"U2 Encoder type: {encoder_type}")
        if encoder_type == 'transformer':
            encoder = TransformerEncoder(
                input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
        elif encoder_type == 'conformer':
            encoder = ConformerEncoder(
                input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
        else:
            raise ValueError(f"not support encoder type:{encoder_type}")

H
Hui Zhang 已提交
867
        # decoder
868 869 870
        decoder = TransformerDecoder(vocab_size,
                                     encoder.output_size(),
                                     **configs['decoder_conf'])
H
Hui Zhang 已提交
871 872 873

        # ctc decoder and ctc loss
        model_conf = configs['model_conf']
874 875 876 877
        ctc = CTCDecoder(
            odim=vocab_size,
            enc_n_units=encoder.output_size(),
            blank_id=0,
H
Hui Zhang 已提交
878
            dropout_rate=model_conf['ctc_dropoutrate'],
879
            reduction=True,  # sum
H
Hui Zhang 已提交
880
            batch_average=True,  # sum / batch_size
H
Hui Zhang 已提交
881
            grad_norm_type=model_conf['ctc_grad_norm_type'])
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

        return vocab_size, encoder, decoder, ctc

    @classmethod
    def from_config(cls, configs: dict):
        """init model.

        Args:
            configs (dict): config dict.

        Raises:
            ValueError: raise when using not support encoder type.

        Returns:
            nn.Layer: U2Model
        """
        model = cls(configs)
        return model

    @classmethod
H
Haoxin Ma 已提交
902
    def from_pretrained(cls, dataloader, config, checkpoint_path):
903 904 905
        """Build a DeepSpeech2Model model from a pretrained model.

        Args:
H
Haoxin Ma 已提交
906
            dataloader (paddle.io.DataLoader): not used.
907 908 909 910 911 912
            config (yacs.config.CfgNode):  model configs
            checkpoint_path (Path or str): the path of pretrained model checkpoint, without extension name

        Returns:
            DeepSpeech2Model: The model built from pretrained result.
        """
H
Hui Zhang 已提交
913 914 915 916
        with UpdateConfig(config):
            config.input_dim = dataloader.collate_fn.feature_size
            config.output_dim = dataloader.collate_fn.vocab_size

917 918 919
        model = cls.from_config(config)

        if checkpoint_path:
H
Hui Zhang 已提交
920
            infos = checkpoint.Checkpoint().load_parameters(
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                model, checkpoint_path=checkpoint_path)
            logger.info(f"checkpoint info: {infos}")
        layer_tools.summary(model)
        return model


class U2InferModel(U2Model):
    def __init__(self, configs: dict):
        super().__init__(configs)

    def forward(self,
                feats,
                feats_lengths,
                decoding_chunk_size=-1,
                num_decoding_left_chunks=-1,
                simulate_streaming=False):
        """export model function

        Args:
            feats (Tensor): [B, T, D]
            feats_lengths (Tensor): [B]

        Returns:
            List[List[int]]: best path result
        """
        return self.ctc_greedy_search(
            feats,
            feats_lengths,
            decoding_chunk_size=decoding_chunk_size,
            num_decoding_left_chunks=num_decoding_left_chunks,
            simulate_streaming=simulate_streaming)