server.py 4.3 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import os
import time
import argparse
import functools
import paddle
import numpy as np

from deepspeech.utils.socket_server import warm_up_test
from deepspeech.utils.socket_server import AsrTCPServer
from deepspeech.utils.socket_server import AsrRequestHandler

from deepspeech.training.cli import default_argument_parser
from deepspeech.exps.deepspeech2.config import get_cfg_defaults

from deepspeech.frontend.utility import read_manifest
from deepspeech.utils.utility import add_arguments, print_arguments

from deepspeech.models.deepspeech2 import DeepSpeech2Model
from deepspeech.io.dataset import ManifestDataset


def start_server(config, args):
    """Start the ASR server"""
H
Hui Zhang 已提交
38 39 40 41 42 43
    config.data.manfiest = config.data.test_manifest
    config.data.augmentation_config = io.StringIO(
        initial_value='{}', newline='')
    config.data.keep_transcription_text = True
    dataset = ManifestDataset.from_config(config)

H
Hui Zhang 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    model = DeepSpeech2Model.from_pretrained(dataset, config,
                                             args.checkpoint_path)
    model.eval()

    # prepare ASR inference handler
    def file_to_transcript(filename):
        feature = dataset.process_utterance(filename, "")
        audio = np.array([feature[0]]).astype('float32')  #[1, D, T]
        audio_len = feature[0].shape[1]
        audio_len = np.array([audio_len]).astype('int64')  # [1]

        result_transcript = model.decode(
            paddle.to_tensor(audio),
            paddle.to_tensor(audio_len),
            vocab_list=dataset.vocab_list,
            decoding_method=config.decoding.decoding_method,
            lang_model_path=config.decoding.lang_model_path,
            beam_alpha=config.decoding.alpha,
            beam_beta=config.decoding.beta,
            beam_size=config.decoding.beam_size,
            cutoff_prob=config.decoding.cutoff_prob,
            cutoff_top_n=config.decoding.cutoff_top_n,
            num_processes=config.decoding.num_proc_bsearch)
        return result_transcript[0]

    # warming up with utterrances sampled from Librispeech
    print('-----------------------------------------------------------')
    print('Warming up ...')
    warm_up_test(
        audio_process_handler=file_to_transcript,
        manifest_path=args.warmup_manifest,
        num_test_cases=3)
    print('-----------------------------------------------------------')

    # start the server
    server = AsrTCPServer(
        server_address=(args.host_ip, args.host_port),
        RequestHandlerClass=AsrRequestHandler,
        speech_save_dir=args.speech_save_dir,
        audio_process_handler=file_to_transcript)
    print("ASR Server Started.")
    server.serve_forever()


def main(config, args):
    start_server(config, args)


if __name__ == "__main__":
    parser = default_argument_parser()
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable
    add_arg('host_ip',          str,
            'localhost',
            "Server's IP address.")
    add_arg('host_port',        int,    8086,    "Server's IP port.")
    add_arg('speech_save_dir',  str,
            'demo_cache',
            "Directory to save demo audios.")
    add_arg('warmup_manifest',  str, None, "Filepath of manifest to warm up.")
    args = parser.parse_args()
    print_arguments(args)

    # https://yaml.org/type/float.html
    config = get_cfg_defaults()
    if args.config:
        config.merge_from_file(args.config)
    if args.opts:
        config.merge_from_list(args.opts)
    config.freeze()
    print(config)

    args.warmup_manifest = config.data.test_manifest
    print_arguments(args)

    if args.dump_config:
        with open(args.dump_config, 'w') as f:
            print(config, file=f)

    main(config, args)