infer.py 23.4 KB
Newer Older
小湉湉's avatar
小湉湉 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from typing import Any
from typing import List
from typing import Optional
from typing import Union

import numpy as np
import paddle
import soundfile as sf
import yaml
from yacs.config import CfgNode

from ..executor import BaseExecutor
K
KP 已提交
28
from ..log import logger
小湉湉's avatar
小湉湉 已提交
29 30 31
from ..utils import cli_register
from ..utils import download_and_decompress
from ..utils import MODEL_HOME
K
KP 已提交
32
from ..utils import stats_wrapper
小湉湉's avatar
小湉湉 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.t2s.frontend import English
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.modules.normalizer import ZScore

__all__ = ['TTSExecutor']

pretrained_models = {
    # speedyspeech
    "speedyspeech_csmsc-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_ckpt_0.5.zip',
        'md5':
        '9edce23b1a87f31b814d9477bf52afbc',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_11400.pdz',
        'speech_stats':
        'feats_stats.npy',
        'phones_dict':
        'phone_id_map.txt',
        'tones_dict':
        'tone_id_map.txt',
    },

    # fastspeech2
    "fastspeech2_csmsc-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip',
        'md5':
        '637d28a5e53aa60275612ba4393d5f22',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_76000.pdz',
        'speech_stats':
        'speech_stats.npy',
        'phones_dict':
        'phone_id_map.txt',
    },
    "fastspeech2_ljspeech-en": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_ljspeech_ckpt_0.5.zip',
        'md5':
        'ffed800c93deaf16ca9b3af89bfcd747',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_100000.pdz',
        'speech_stats':
        'speech_stats.npy',
        'phones_dict':
        'phone_id_map.txt',
    },
    "fastspeech2_aishell3-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_aishell3_ckpt_0.4.zip',
        'md5':
        'f4dd4a5f49a4552b77981f544ab3392e',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_96400.pdz',
        'speech_stats':
        'speech_stats.npy',
        'phones_dict':
        'phone_id_map.txt',
        'speaker_dict':
        'speaker_id_map.txt',
    },
    "fastspeech2_vctk-en": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_vctk_ckpt_0.5.zip',
        'md5':
        '743e5024ca1e17a88c5c271db9779ba4',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_66200.pdz',
        'speech_stats':
        'speech_stats.npy',
        'phones_dict':
        'phone_id_map.txt',
        'speaker_dict':
        'speaker_id_map.txt',
    },
    # pwgan
    "pwgan_csmsc-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_ckpt_0.4.zip',
        'md5':
        '2e481633325b5bdf0a3823c714d2c117',
        'config':
        'pwg_default.yaml',
        'ckpt':
        'pwg_snapshot_iter_400000.pdz',
        'speech_stats':
        'pwg_stats.npy',
    },
    "pwgan_ljspeech-en": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_ljspeech_ckpt_0.5.zip',
        'md5':
        '53610ba9708fd3008ccaf8e99dacbaf0',
        'config':
        'pwg_default.yaml',
        'ckpt':
        'pwg_snapshot_iter_400000.pdz',
        'speech_stats':
        'pwg_stats.npy',
    },
    "pwgan_aishell3-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_aishell3_ckpt_0.5.zip',
        'md5':
        'd7598fa41ad362d62f85ffc0f07e3d84',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_1000000.pdz',
        'speech_stats':
        'feats_stats.npy',
    },
    "pwgan_vctk-en": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_vctk_ckpt_0.5.zip',
        'md5':
        '322ca688aec9b127cec2788b65aa3d52',
        'config':
        'pwg_default.yaml',
        'ckpt':
        'pwg_snapshot_iter_1000000.pdz',
        'speech_stats':
        'pwg_stats.npy',
    },
    # mb_melgan
    "mb_melgan_csmsc-zh": {
        'url':
小湉湉's avatar
小湉湉 已提交
172
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip',
小湉湉's avatar
小湉湉 已提交
173
        'md5':
小湉湉's avatar
小湉湉 已提交
174
        'ee5f0604e20091f0d495b6ec4618b90d',
小湉湉's avatar
小湉湉 已提交
175
        'config':
小湉湉's avatar
小湉湉 已提交
176
        'default.yaml',
小湉湉's avatar
小湉湉 已提交
177
        'ckpt':
小湉湉's avatar
小湉湉 已提交
178
        'snapshot_iter_1000000.pdz',
小湉湉's avatar
小湉湉 已提交
179 180 181
        'speech_stats':
        'feats_stats.npy',
    },
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    # style_melgan
    "style_melgan_csmsc-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/style_melgan/style_melgan_csmsc_ckpt_0.1.1.zip',
        'md5':
        '5de2d5348f396de0c966926b8c462755',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_1500000.pdz',
        'speech_stats':
        'feats_stats.npy',
    },
    # hifigan
    "hifigan_csmsc-zh": {
        'url':
        'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip',
        'md5':
        'dd40a3d88dfcf64513fba2f0f961ada6',
        'config':
        'default.yaml',
        'ckpt':
        'snapshot_iter_2500000.pdz',
        'speech_stats':
        'feats_stats.npy',
    },
小湉湉's avatar
小湉湉 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
}

model_alias = {
    # acoustic model
    "speedyspeech":
    "paddlespeech.t2s.models.speedyspeech:SpeedySpeech",
    "speedyspeech_inference":
    "paddlespeech.t2s.models.speedyspeech:SpeedySpeechInference",
    "fastspeech2":
    "paddlespeech.t2s.models.fastspeech2:FastSpeech2",
    "fastspeech2_inference":
    "paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
    # voc
    "pwgan":
    "paddlespeech.t2s.models.parallel_wavegan:PWGGenerator",
    "pwgan_inference":
    "paddlespeech.t2s.models.parallel_wavegan:PWGInference",
    "mb_melgan":
    "paddlespeech.t2s.models.melgan:MelGANGenerator",
    "mb_melgan_inference":
    "paddlespeech.t2s.models.melgan:MelGANInference",
229 230 231 232 233 234 235 236
    "style_melgan":
    "paddlespeech.t2s.models.melgan:StyleMelGANGenerator",
    "style_melgan_inference":
    "paddlespeech.t2s.models.melgan:StyleMelGANInference",
    "hifigan":
    "paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
    "hifigan_inference":
    "paddlespeech.t2s.models.hifigan:HiFiGANInference",
小湉湉's avatar
小湉湉 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
}


@cli_register(
    name='paddlespeech.tts', description='Text to Speech infer command.')
class TTSExecutor(BaseExecutor):
    def __init__(self):
        super().__init__()

        self.parser = argparse.ArgumentParser(
            prog='paddlespeech.tts', add_help=True)
        self.parser.add_argument(
            '--input', type=str, required=True, help='Input text to generate.')
        # acoustic model
        self.parser.add_argument(
            '--am',
            type=str,
            default='fastspeech2_csmsc',
            choices=[
                'speedyspeech_csmsc', 'fastspeech2_csmsc',
                'fastspeech2_ljspeech', 'fastspeech2_aishell3',
                'fastspeech2_vctk'
            ],
            help='Choose acoustic model type of tts task.')
        self.parser.add_argument(
            '--am_config',
            type=str,
            default=None,
            help='Config of acoustic model. Use deault config when it is None.')
        self.parser.add_argument(
            '--am_ckpt',
            type=str,
            default=None,
            help='Checkpoint file of acoustic model.')
        self.parser.add_argument(
            "--am_stat",
            type=str,
K
KP 已提交
274
            default=None,
小湉湉's avatar
小湉湉 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
            help="mean and standard deviation used to normalize spectrogram when training acoustic model."
        )
        self.parser.add_argument(
            "--phones_dict",
            type=str,
            default=None,
            help="phone vocabulary file.")
        self.parser.add_argument(
            "--tones_dict",
            type=str,
            default=None,
            help="tone vocabulary file.")
        self.parser.add_argument(
            "--speaker_dict",
            type=str,
            default=None,
            help="speaker id map file.")
        self.parser.add_argument(
            '--spk_id',
            type=int,
            default=0,
            help='spk id for multi speaker acoustic model')
        # vocoder
        self.parser.add_argument(
            '--voc',
            type=str,
            default='pwgan_csmsc',
            choices=[
                'pwgan_csmsc', 'pwgan_ljspeech', 'pwgan_aishell3', 'pwgan_vctk',
304
                'mb_melgan_csmsc', 'style_melgan_csmsc', 'hifigan_csmsc'
小湉湉's avatar
小湉湉 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            ],
            help='Choose vocoder type of tts task.')

        self.parser.add_argument(
            '--voc_config',
            type=str,
            default=None,
            help='Config of voc. Use deault config when it is None.')
        self.parser.add_argument(
            '--voc_ckpt',
            type=str,
            default=None,
            help='Checkpoint file of voc.')
        self.parser.add_argument(
            "--voc_stat",
            type=str,
K
KP 已提交
321
            default=None,
小湉湉's avatar
小湉湉 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            help="mean and standard deviation used to normalize spectrogram when training voc."
        )
        # other
        self.parser.add_argument(
            '--lang',
            type=str,
            default='zh',
            help='Choose model language. zh or en')
        self.parser.add_argument(
            '--device',
            type=str,
            default=paddle.get_device(),
            help='Choose device to execute model inference.')

        self.parser.add_argument(
            '--output', type=str, default='output.wav', help='output file name')

    def _get_pretrained_path(self, tag: str) -> os.PathLike:
        """
        Download and returns pretrained resources path of current task.
        """
        assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
            tag)

        res_path = os.path.join(MODEL_HOME, tag)
        decompressed_path = download_and_decompress(pretrained_models[tag],
                                                    res_path)
        decompressed_path = os.path.abspath(decompressed_path)
        logger.info(
            'Use pretrained model stored in: {}'.format(decompressed_path))
        return decompressed_path

    def _init_from_path(
            self,
            am: str='fastspeech2_csmsc',
            am_config: Optional[os.PathLike]=None,
            am_ckpt: Optional[os.PathLike]=None,
            am_stat: Optional[os.PathLike]=None,
            phones_dict: Optional[os.PathLike]=None,
            tones_dict: Optional[os.PathLike]=None,
            speaker_dict: Optional[os.PathLike]=None,
            voc: str='pwgan_csmsc',
            voc_config: Optional[os.PathLike]=None,
            voc_ckpt: Optional[os.PathLike]=None,
            voc_stat: Optional[os.PathLike]=None,
            lang: str='zh', ):
        """
        Init model and other resources from a specific path.
        """
        if hasattr(self, 'am') and hasattr(self, 'voc'):
            logger.info('Models had been initialized.')
            return
        # am
        am_tag = am + '-' + lang
        if am_ckpt is None or am_config is None or am_stat is None or phones_dict is None:
            am_res_path = self._get_pretrained_path(am_tag)
            self.am_res_path = am_res_path
            self.am_config = os.path.join(am_res_path,
                                          pretrained_models[am_tag]['config'])
            self.am_ckpt = os.path.join(am_res_path,
                                        pretrained_models[am_tag]['ckpt'])
            self.am_stat = os.path.join(
                am_res_path, pretrained_models[am_tag]['speech_stats'])
            # must have phones_dict in acoustic
            self.phones_dict = os.path.join(
                am_res_path, pretrained_models[am_tag]['phones_dict'])
            print("self.phones_dict:", self.phones_dict)
            logger.info(am_res_path)
            logger.info(self.am_config)
            logger.info(self.am_ckpt)
        else:
            self.am_config = os.path.abspath(am_config)
            self.am_ckpt = os.path.abspath(am_ckpt)
            self.am_stat = os.path.abspath(am_stat)
            self.phones_dict = os.path.abspath(phones_dict)
            self.am_res_path = os.path.dirname(os.path.abspath(self.am_config))
        print("self.phones_dict:", self.phones_dict)

        # for speedyspeech
        self.tones_dict = None
        if 'tones_dict' in pretrained_models[am_tag]:
            self.tones_dict = os.path.join(
                am_res_path, pretrained_models[am_tag]['tones_dict'])
            if tones_dict:
                self.tones_dict = tones_dict

        # for multi speaker fastspeech2
        self.speaker_dict = None
        if 'speaker_dict' in pretrained_models[am_tag]:
            self.speaker_dict = os.path.join(
                am_res_path, pretrained_models[am_tag]['speaker_dict'])
            if speaker_dict:
                self.speaker_dict = speaker_dict

        # voc
        voc_tag = voc + '-' + lang
        if voc_ckpt is None or voc_config is None or voc_stat is None:
            voc_res_path = self._get_pretrained_path(voc_tag)
            self.voc_res_path = voc_res_path
            self.voc_config = os.path.join(voc_res_path,
                                           pretrained_models[voc_tag]['config'])
            self.voc_ckpt = os.path.join(voc_res_path,
                                         pretrained_models[voc_tag]['ckpt'])
            self.voc_stat = os.path.join(
                voc_res_path, pretrained_models[voc_tag]['speech_stats'])
            logger.info(voc_res_path)
            logger.info(self.voc_config)
            logger.info(self.voc_ckpt)
        else:
            self.voc_config = os.path.abspath(voc_config)
            self.voc_ckpt = os.path.abspath(voc_ckpt)
            self.voc_stat = os.path.abspath(voc_stat)
            self.voc_res_path = os.path.dirname(
                os.path.abspath(self.voc_config))

        # Init body.
        with open(self.am_config) as f:
            self.am_config = CfgNode(yaml.safe_load(f))
        with open(self.voc_config) as f:
            self.voc_config = CfgNode(yaml.safe_load(f))

        with open(self.phones_dict, "r") as f:
            phn_id = [line.strip().split() for line in f.readlines()]
        vocab_size = len(phn_id)
        print("vocab_size:", vocab_size)

        tone_size = None
        if self.tones_dict:
            with open(self.tones_dict, "r") as f:
                tone_id = [line.strip().split() for line in f.readlines()]
            tone_size = len(tone_id)
            print("tone_size:", tone_size)

        spk_num = None
        if self.speaker_dict:
            with open(self.speaker_dict, 'rt') as f:
                spk_id = [line.strip().split() for line in f.readlines()]
            spk_num = len(spk_id)
            print("spk_num:", spk_num)

        # frontend
        if lang == 'zh':
            self.frontend = Frontend(
                phone_vocab_path=self.phones_dict,
                tone_vocab_path=self.tones_dict)

        elif lang == 'en':
            self.frontend = English(phone_vocab_path=self.phones_dict)
        print("frontend done!")

        # acoustic model
        odim = self.am_config.n_mels
        # model: {model_name}_{dataset}
        am_name = am[:am.rindex('_')]

        am_class = dynamic_import(am_name, model_alias)
        am_inference_class = dynamic_import(am_name + '_inference', model_alias)

        if am_name == 'fastspeech2':
            am = am_class(
                idim=vocab_size,
                odim=odim,
                spk_num=spk_num,
                **self.am_config["model"])
        elif am_name == 'speedyspeech':
            am = am_class(
                vocab_size=vocab_size,
                tone_size=tone_size,
                **self.am_config["model"])

        am.set_state_dict(paddle.load(self.am_ckpt)["main_params"])
        am.eval()
        am_mu, am_std = np.load(self.am_stat)
        am_mu = paddle.to_tensor(am_mu)
        am_std = paddle.to_tensor(am_std)
        am_normalizer = ZScore(am_mu, am_std)
        self.am_inference = am_inference_class(am_normalizer, am)
499
        self.am_inference.eval()
小湉湉's avatar
小湉湉 已提交
500 501 502 503
        print("acoustic model done!")

        # vocoder
        # model: {model_name}_{dataset}
小湉湉's avatar
小湉湉 已提交
504
        voc_name = voc[:voc.rindex('_')]
小湉湉's avatar
小湉湉 已提交
505 506 507 508 509 510 511 512 513 514 515 516
        voc_class = dynamic_import(voc_name, model_alias)
        voc_inference_class = dynamic_import(voc_name + '_inference',
                                             model_alias)
        voc = voc_class(**self.voc_config["generator_params"])
        voc.set_state_dict(paddle.load(self.voc_ckpt)["generator_params"])
        voc.remove_weight_norm()
        voc.eval()
        voc_mu, voc_std = np.load(self.voc_stat)
        voc_mu = paddle.to_tensor(voc_mu)
        voc_std = paddle.to_tensor(voc_std)
        voc_normalizer = ZScore(voc_mu, voc_std)
        self.voc_inference = voc_inference_class(voc_normalizer, voc)
517
        self.voc_inference.eval()
小湉湉's avatar
小湉湉 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        print("voc done!")

    def preprocess(self, input: Any, *args, **kwargs):
        """
        Input preprocess and return paddle.Tensor stored in self._inputs.
        Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed.

        Args:
            input (Any): Input text/file/stream or other content.
        """
        pass

    @paddle.no_grad()
    def infer(self,
              text: str,
              lang: str='zh',
              am: str='fastspeech2_csmsc',
              spk_id: int=0):
        """
        Model inference and result stored in self.output.
        """
小湉湉's avatar
小湉湉 已提交
539 540
        am_name = am[:am.rindex('_')]
        am_dataset = am[am.rindex('_') + 1:]
小湉湉's avatar
小湉湉 已提交
541
        get_tone_ids = False
542
        merge_sentences = False
小湉湉's avatar
小湉湉 已提交
543
        if am_name == 'speedyspeech':
小湉湉's avatar
小湉湉 已提交
544 545 546
            get_tone_ids = True
        if lang == 'zh':
            input_ids = self.frontend.get_input_ids(
547 548 549
                text,
                merge_sentences=merge_sentences,
                get_tone_ids=get_tone_ids)
小湉湉's avatar
小湉湉 已提交
550 551 552 553
            phone_ids = input_ids["phone_ids"]
            if get_tone_ids:
                tone_ids = input_ids["tone_ids"]
        elif lang == 'en':
554 555
            input_ids = self.frontend.get_input_ids(
                text, merge_sentences=merge_sentences)
小湉湉's avatar
小湉湉 已提交
556 557 558 559
            phone_ids = input_ids["phone_ids"]
        else:
            print("lang should in {'zh', 'en'}!")

560 561 562 563 564 565 566 567
        flags = 0
        for i in range(len(phone_ids)):
            part_phone_ids = phone_ids[i]
            # am
            if am_name == 'speedyspeech':
                part_tone_ids = tone_ids[i]
                mel = self.am_inference(part_phone_ids, part_tone_ids)
            # fastspeech2
小湉湉's avatar
小湉湉 已提交
568
            else:
569 570 571 572 573 574 575 576 577 578 579 580 581 582
                # multi speaker
                if am_dataset in {"aishell3", "vctk"}:
                    mel = self.am_inference(
                        part_phone_ids, spk_id=paddle.to_tensor(spk_id))
                else:
                    mel = self.am_inference(part_phone_ids)
            # voc
            wav = self.voc_inference(mel)
            if flags == 0:
                wav_all = wav
                flags = 1
            else:
                wav_all = paddle.concat([wav_all, wav])
        self._outputs['wav'] = wav_all
小湉湉's avatar
小湉湉 已提交
583

K
KP 已提交
584
    def postprocess(self, output: str='output.wav') -> Union[str, os.PathLike]:
小湉湉's avatar
小湉湉 已提交
585 586 587 588 589 590 591
        """
        Output postprocess and return results.
        This method get model output from self._outputs and convert it into human-readable results.

        Returns:
            Union[str, os.PathLike]: Human-readable results such as texts and audio files.
        """
K
KP 已提交
592
        output = os.path.abspath(os.path.expanduser(output))
小湉湉's avatar
小湉湉 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        sf.write(
            output, self._outputs['wav'].numpy(), samplerate=self.am_config.fs)
        return output

    def execute(self, argv: List[str]) -> bool:
        """
        Command line entry.
        """

        args = self.parser.parse_args(argv)

        text = args.input
        am = args.am
        am_config = args.am_config
        am_ckpt = args.am_ckpt
        am_stat = args.am_stat
        phones_dict = args.phones_dict
        print("phones_dict:", phones_dict)
        tones_dict = args.tones_dict
        speaker_dict = args.speaker_dict
        voc = args.voc
        voc_config = args.voc_config
        voc_ckpt = args.voc_ckpt
        voc_stat = args.voc_stat
        lang = args.lang
        device = args.device
        output = args.output
        spk_id = args.spk_id

        try:
            res = self(
                text=text,
                # acoustic model related
                am=am,
                am_config=am_config,
                am_ckpt=am_ckpt,
                am_stat=am_stat,
                phones_dict=phones_dict,
                tones_dict=tones_dict,
                speaker_dict=speaker_dict,
                spk_id=spk_id,
                # vocoder related
                voc=voc,
                voc_config=voc_config,
                voc_ckpt=voc_ckpt,
                voc_stat=voc_stat,
                # other
                lang=lang,
                device=device,
                output=output)
K
KP 已提交
643
            logger.info('Wave file has been generated: {}'.format(res))
小湉湉's avatar
小湉湉 已提交
644 645 646 647 648
            return True
        except Exception as e:
            logger.exception(e)
            return False

K
KP 已提交
649
    @stats_wrapper
小湉湉's avatar
小湉湉 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
    def __call__(self,
                 text: str,
                 am: str='fastspeech2_csmsc',
                 am_config: Optional[os.PathLike]=None,
                 am_ckpt: Optional[os.PathLike]=None,
                 am_stat: Optional[os.PathLike]=None,
                 spk_id: int=0,
                 phones_dict: Optional[os.PathLike]=None,
                 tones_dict: Optional[os.PathLike]=None,
                 speaker_dict: Optional[os.PathLike]=None,
                 voc: str='pwgan_csmsc',
                 voc_config: Optional[os.PathLike]=None,
                 voc_ckpt: Optional[os.PathLike]=None,
                 voc_stat: Optional[os.PathLike]=None,
                 lang: str='zh',
K
KP 已提交
665
                 device: str=paddle.get_device(),
小湉湉's avatar
小湉湉 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                 output: str='output.wav'):
        """
        Python API to call an executor.
        """
        paddle.set_device(device)
        self._init_from_path(
            am=am,
            am_config=am_config,
            am_ckpt=am_ckpt,
            am_stat=am_stat,
            phones_dict=phones_dict,
            tones_dict=tones_dict,
            speaker_dict=speaker_dict,
            voc=voc,
            voc_config=voc_config,
            voc_ckpt=voc_ckpt,
            voc_stat=voc_stat,
            lang=lang)

        self.infer(text=text, lang=lang, am=am, spk_id=spk_id)

        res = self.postprocess(output=output)

        return res