model.py 26.0 KB
Newer Older
J
Junkun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
20
from contextlib import nullcontext
J
Junkun 已提交
21 22 23
from pathlib import Path
from typing import Optional

H
Hui Zhang 已提交
24
import jsonlines
J
Junkun 已提交
25 26 27 28 29 30
import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

31 32
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.collator import TripletSpeechCollator
J
Junkun 已提交
33 34 35 36 37 38
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2_st import U2STModel
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
from deepspeech.training.scheduler import WarmupLR
H
Hui Zhang 已提交
39
from deepspeech.training.timer import Timer
J
Junkun 已提交
40
from deepspeech.training.trainer import Trainer
41
from deepspeech.utils import bleu_score
J
Junkun 已提交
42 43 44 45 46 47
from deepspeech.utils import ctc_utils
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils import text_grid
from deepspeech.utils import utility
from deepspeech.utils.log import Log
H
Hui Zhang 已提交
48
from deepspeech.utils.utility import UpdateConfig
J
Junkun 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

logger = Log(__name__).getlog()


class U2STTrainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()
87
        # forward
J
Junkun 已提交
88 89 90 91 92 93 94 95 96 97 98
        utt, audio, audio_len, text, text_len = batch_data
        if isinstance(text, list) and isinstance(text_len, list):
            # joint training with ASR. Two decoding texts [translation, transcription]
            text, text_transcript = text
            text_len, text_transcript_len = text_len
            loss, st_loss, attention_loss, ctc_loss = self.model(
                audio, audio_len, text, text_len, text_transcript,
                text_transcript_len)
        else:
            loss, st_loss, attention_loss, ctc_loss = self.model(
                audio, audio_len, text, text_len)
99

J
Junkun 已提交
100 101 102 103 104 105 106 107
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

108 109 110 111 112
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
113 114
            context = self.model.no_sync if (hasattr(self.model, "no_sync") and
                                             self.parallel) else nullcontext
115 116 117 118 119 120 121 122 123
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
J
Junkun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

        if (batch_index + 1) % train_conf.log_interval == 0:
            msg += "train time: {:>.3f}s, ".format(iteration_time)
            msg += "batch size: {}, ".format(self.config.collator.batch_size)
            msg += "accum: {}, ".format(train_conf.accum_grad)
            msg += ', '.join('{}: {:>.6f}'.format(k, v)
                             for k, v in losses_np.items())
            logger.info(msg)

            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
            utt, audio, audio_len, text, text_len = batch
            if isinstance(text, list) and isinstance(text_len, list):
                text, text_transcript = text
                text_len, text_transcript_len = text_len
                loss, st_loss, attention_loss, ctc_loss = self.model(
                    audio, audio_len, text, text_len, text_transcript,
                    text_transcript_len)
            else:
                loss, st_loss, attention_loss, ctc_loss = self.model(
                    audio, audio_len, text, text_len)
            if paddle.isfinite(loss):
                num_utts = batch[1].shape[0]
                num_seen_utts += num_utts
                total_loss += float(st_loss) * num_utts
                valid_losses['val_loss'].append(float(st_loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_st_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info st_val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

200
        self.before_train()
J
Junkun 已提交
201 202 203

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
H
Hui Zhang 已提交
204 205 206
            with Timer("Epoch-Train Time Cost: {}"):
                self.model.train()
                try:
J
Junkun 已提交
207
                    data_start_time = time.time()
H
Hui Zhang 已提交
208 209 210 211 212 213 214 215 216 217
                    for batch_index, batch in enumerate(self.train_loader):
                        dataload_time = time.time() - data_start_time
                        msg = "Train: Rank: {}, ".format(dist.get_rank())
                        msg += "epoch: {}, ".format(self.epoch)
                        msg += "step: {}, ".format(self.iteration)
                        msg += "batch : {}/{}, ".format(batch_index + 1,
                                                        len(self.train_loader))
                        msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
                        msg += "data time: {:>.3f}s, ".format(dataload_time)
                        self.train_batch(batch_index, batch, msg)
H
Hui Zhang 已提交
218
                        self.after_train_batch()
H
Hui Zhang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                        data_start_time = time.time()
                except Exception as e:
                    logger.error(e)
                    raise e

            with Timer("Eval Time Cost: {}"):
                total_loss, num_seen_utts = self.valid()
                if dist.get_world_size() > 1:
                    num_seen_utts = paddle.to_tensor(num_seen_utts)
                    # the default operator in all_reduce function is sum.
                    dist.all_reduce(num_seen_utts)
                    total_loss = paddle.to_tensor(total_loss)
                    dist.all_reduce(total_loss)
                    cv_loss = total_loss / num_seen_utts
                    cv_loss = float(cv_loss)
                else:
                    cv_loss = total_loss / num_seen_utts
J
Junkun 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
        config.collator.keep_transcription_text = False

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
H
Hui Zhang 已提交
253
        train_dataset = ManifestDataset.from_config(config)
J
Junkun 已提交
254 255

        config.data.manifest = config.data.dev_manifest
H
Hui Zhang 已提交
256
        dev_dataset = ManifestDataset.from_config(config)
J
Junkun 已提交
257

258 259 260
        if config.model.model_conf.asr_weight > 0.:
            Collator = TripletSpeechCollator
            TestCollator = SpeechCollator
J
Junkun 已提交
261
        else:
262
            TestCollator = Collator = SpeechCollator
J
Junkun 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

        collate_fn_train = Collator.from_config(config)
        config.collator.augmentation_config = ""
        collate_fn_dev = Collator.from_config(config)

        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
                batch_size=config.collator.batch_size,
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
                batch_size=config.collator.batch_size,
                drop_last=True,
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
        self.valid_loader = DataLoader(
            dev_dataset,
            batch_size=config.collator.batch_size,
            shuffle=False,
            drop_last=False,
H
Hui Zhang 已提交
296 297
            collate_fn=collate_fn_dev,
            num_workers=config.collator.num_workers, )
J
Junkun 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
        # config.data.min_input_len = 0.0  # second
        # config.data.max_input_len = float('inf')  # second
        # config.data.min_output_len = 0.0  # tokens
        # config.data.max_output_len = float('inf')  # tokens
        # config.data.min_output_input_ratio = 0.00
        # config.data.max_output_input_ratio = float('inf')
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
        config.collator.keep_transcription_text = True
        config.collator.augmentation_config = ""
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Hui Zhang 已提交
318 319
            collate_fn=TestCollator.from_config(config),
            num_workers=config.collator.num_workers, )
J
Junkun 已提交
320 321 322 323 324 325 326
        # return text token id
        config.collator.keep_transcription_text = False
        self.align_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Hui Zhang 已提交
327 328
            collate_fn=TestCollator.from_config(config),
            num_workers=config.collator.num_workers, )
J
Junkun 已提交
329 330 331 332 333
        logger.info("Setup train/valid/test/align Dataloader!")

    def setup_model(self):
        config = self.config
        model_conf = config.model
H
Hui Zhang 已提交
334 335 336 337
        with UpdateConfig(model_conf):
            model_conf.input_dim = self.train_loader.collate_fn.feature_size
            model_conf.output_dim = self.train_loader.collate_fn.vocab_size

J
Junkun 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        model = U2STModel.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

        if scheduler_type == 'expdecaylr':
            lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
                learning_rate=optim_conf.lr,
                gamma=scheduler_conf.lr_decay,
                verbose=False)
        elif scheduler_type == 'warmuplr':
            lr_scheduler = WarmupLR(
                learning_rate=optim_conf.lr,
                warmup_steps=scheduler_conf.warmup_steps,
                verbose=False)
        elif scheduler_type == 'noam':
            lr_scheduler = paddle.optimizer.lr.NoamDecay(
                learning_rate=optim_conf.lr,
                d_model=model_conf.encoder_conf.output_size,
                warmup_steps=scheduler_conf.warmup_steps,
                verbose=False)
        else:
            raise ValueError(f"Not support scheduler: {scheduler_type}")

371 372
        grad_clip = ClipGradByGlobalNormWithLog(train_config.global_grad_clip)
        weight_decay = paddle.regularizer.L2Decay(optim_conf.weight_decay)
J
Junkun 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        if optim_type == 'adam':
            optimizer = paddle.optimizer.Adam(
                learning_rate=lr_scheduler,
                parameters=model.parameters(),
                weight_decay=weight_decay,
                grad_clip=grad_clip)
        else:
            raise ValueError(f"Not support optim: {optim_type}")

        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2STTester(U2STTrainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
401
                error_rate_type='bleu',  # Error rate type for evaluation. Options `bleu`, 'char_bleu'
J
Junkun 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
                # 0: used for training, it's prohibited here.
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

    def compute_translation_metrics(self,
                                    utts,
                                    audio,
                                    audio_len,
                                    texts,
                                    texts_len,
436
                                    bleu_func,
J
Junkun 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                                    fout=None):
        cfg = self.config.decoding
        len_refs, num_ins = 0, 0

        start_time = time.time()
        text_feature = self.test_loader.collate_fn.text_feature

        refs = [
            "".join(chr(t) for t in text[:text_len])
            for text, text_len in zip(texts, texts_len)
        ]
        # from IPython import embed
        # import os
        # embed()
        # os._exit(0)
        hyps = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

        for utt, target, result in zip(utts, refs, hyps):
            len_refs += len(target.split())
            num_ins += 1
            if fout:
H
Hui Zhang 已提交
474
                fout.write({"utt": utt, "ref": target, "hyp": result})
H
Hui Zhang 已提交
475 476 477
            logger.info(f"Utt: {utt}")
            logger.info(f"Ref: {target}")
            logger.info(f"Hyp: {result}")
J
Junkun 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            logger.info("One example BLEU = %s" %
                        (bleu_func([result], [[target]]).prec_str))

        return dict(
            hyps=hyps,
            refs=refs,
            bleu=bleu_func(hyps, [refs]).score,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

497 498 499
        cfg = self.config.decoding
        bleu_func = bleu_score.char_bleu if cfg.error_rate_type == 'char-bleu' else bleu_score.bleu

J
Junkun 已提交
500 501 502 503 504
        stride_ms = self.test_loader.collate_fn.stride_ms
        hyps, refs = [], []
        len_refs, num_ins = 0, 0
        num_frames = 0.0
        num_time = 0.0
H
Hui Zhang 已提交
505
        with jsonlines.open(self.args.result_file, 'w') as fout:
J
Junkun 已提交
506 507
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_translation_metrics(
508
                    *batch, bleu_func=bleu_func, fout=fout)
J
Junkun 已提交
509 510 511 512 513 514 515 516
                hyps += metrics['hyps']
                refs += metrics['refs']
                bleu = metrics['bleu']
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                rtf = num_time / (num_frames * stride_ms)
517
                logger.info("RTF: %f, BELU (%d) = %f" % (rtf, num_ins, bleu))
J
Junkun 已提交
518 519 520 521 522 523

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
524
        msg += "Test set [%s]: %s" % (len(hyps), str(bleu_func(hyps, [refs])))
J
Junkun 已提交
525
        logger.info(msg)
526
        bleu_meta_path = os.path.splitext(self.args.result_file)[0] + '.bleu'
J
Junkun 已提交
527 528 529 530 531 532 533 534 535 536
        err_type_str = "BLEU"
        with open(bleu_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                err_type_str:
537
                bleu_func(hyps, [refs]).score,
J
Junkun 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "decode_method":
                self.config.decoding.decoding_method,
            })
            f.write(data + '\n')

    @paddle.no_grad()
    def align(self):
        if self.config.decoding.batch_size > 1:
            logger.fatal('alignment mode must be running with batch_size == 1')
            sys.exit(1)

        # xxx.align
        assert self.args.result_file and self.args.result_file.endswith(
            '.align')

        self.model.eval()
        logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")

        stride_ms = self.align_loader.collate_fn.stride_ms
        token_dict = self.align_loader.collate_fn.vocab_list
        with open(self.args.result_file, 'w') as fout:
            # one example in batch
            for i, batch in enumerate(self.align_loader):
                key, feat, feats_length, target, target_length = batch

                # 1. Encoder
                encoder_out, encoder_mask = self.model._forward_encoder(
                    feat, feats_length)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
571
                maxlen = encoder_out.shape[1]
J
Junkun 已提交
572 573 574 575 576 577 578
                ctc_probs = self.model.ctc.log_softmax(
                    encoder_out)  # (1, maxlen, vocab_size)

                # 2. alignment
                ctc_probs = ctc_probs.squeeze(0)
                target = target.squeeze(0)
                alignment = ctc_utils.forced_align(ctc_probs, target)
579
                logger.info(f"align ids: {key[0]} {alignment}")
J
Junkun 已提交
580 581 582 583 584
                fout.write('{} {}\n'.format(key[0], alignment))

                # 3. gen praat
                # segment alignment
                align_segs = text_grid.segment_alignment(alignment)
585
                logger.info(f"align tokens: {key[0]}, {align_segs}")
J
Junkun 已提交
586 587 588 589 590
                # IntervalTier, List["start end token\n"]
                subsample = utility.get_subsample(self.config)
                tierformat = text_grid.align_to_tierformat(
                    align_segs, subsample, token_dict)
                # write tier
591 592 593 594
                align_output_path = Path(self.args.result_file).parent / "align"
                align_output_path.mkdir(parents=True, exist_ok=True)
                tier_path = align_output_path / (key[0] + ".tier")
                with tier_path.open('w') as f:
J
Junkun 已提交
595 596
                    f.writelines(tierformat)
                # write textgrid
597
                textgrid_path = align_output_path / (key[0] + ".TextGrid")
J
Junkun 已提交
598 599 600 601 602 603 604
                second_per_frame = 1. / (1000. /
                                         stride_ms)  # 25ms window, 10ms stride
                second_per_example = (
                    len(alignment) + 1) * subsample * second_per_frame
                text_grid.generate_textgrid(
                    maxtime=second_per_example,
                    intervals=tierformat,
605
                    output=str(textgrid_path))
J
Junkun 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
        infer_model = U2InferModel.from_pretrained(self.test_loader,
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
        feat_dim = self.test_loader.collate_fn.feature_size
        input_spec = [
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)