model.py 22.3 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import time
from collections import defaultdict
19
from contextlib import nullcontext
H
Hui Zhang 已提交
20 21
from typing import Optional

H
Hui Zhang 已提交
22
import jsonlines
H
Hui Zhang 已提交
23 24 25 26 27
import numpy as np
import paddle
from paddle import distributed as dist
from yacs.config import CfgNode

28 29
from deepspeech.frontend.featurizer import TextFeaturizer
from deepspeech.frontend.utility import load_dict
H
Hui Zhang 已提交
30 31 32 33
from deepspeech.io.dataloader import BatchDataLoader
from deepspeech.models.u2 import U2Model
from deepspeech.training.optimizer import OptimizerFactory
from deepspeech.training.scheduler import LRSchedulerFactory
H
Hui Zhang 已提交
34
from deepspeech.training.timer import Timer
H
Hui Zhang 已提交
35 36 37 38 39 40
from deepspeech.training.trainer import Trainer
from deepspeech.utils import ctc_utils
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log
H
Hui Zhang 已提交
41
from deepspeech.utils.utility import UpdateConfig
H
Hui Zhang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

logger = Log(__name__).getlog()


def get_cfg_defaults():
    """Get a yacs CfgNode object with default values for my_project."""
    # Return a clone so that the defaults will not be altered
    # This is for the "local variable" use pattern
    _C = CfgNode()

    _C.model = U2Model.params()

    _C.training = U2Trainer.params()

    _C.decoding = U2Tester.params()

    config = _C.clone()
    config.set_new_allowed(True)
    return config


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                checkpoint=dict(
                    kbest_n=50,
                    latest_n=5, ), ))
        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

86
        # forward
87
        utt, audio, audio_len, text, text_len = batch_data
H
Hui Zhang 已提交
88 89
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
90

H
Hui Zhang 已提交
91 92 93 94 95 96 97 98
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

99 100 101 102 103
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
104 105
            context = self.model.no_sync if (hasattr(self.model, "no_sync") and
                                             self.parallel) else nullcontext
106 107 108 109 110 111 112 113 114
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
H
Hui Zhang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

        if (batch_index + 1) % train_conf.log_interval == 0:
            msg += "train time: {:>.3f}s, ".format(iteration_time)
            msg += "batch size: {}, ".format(self.config.collator.batch_size)
            msg += "accum: {}, ".format(train_conf.accum_grad)
            msg += ', '.join('{}: {:>.6f}'.format(k, v)
                             for k, v in losses_np.items())
            logger.info(msg)

            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
144

H
Hui Zhang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        for i, batch in enumerate(self.valid_loader):
            utt, audio, audio_len, text, text_len = batch
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
            if paddle.isfinite(loss):
                num_utts = batch[1].shape[0]
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

H
Hui Zhang 已提交
176
    def do_train(self):
H
Hui Zhang 已提交
177 178 179 180 181 182 183 184
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

185
        self.before_train()
H
Hui Zhang 已提交
186 187 188

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
H
Hui Zhang 已提交
189 190 191
            with Timer("Epoch-Train Time Cost: {}"):
                self.model.train()
                try:
H
Hui Zhang 已提交
192
                    data_start_time = time.time()
H
Hui Zhang 已提交
193 194 195 196 197 198 199 200 201 202
                    for batch_index, batch in enumerate(self.train_loader):
                        dataload_time = time.time() - data_start_time
                        msg = "Train: Rank: {}, ".format(dist.get_rank())
                        msg += "epoch: {}, ".format(self.epoch)
                        msg += "step: {}, ".format(self.iteration)
                        msg += "batch : {}/{}, ".format(batch_index + 1,
                                                        len(self.train_loader))
                        msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
                        msg += "data time: {:>.3f}s, ".format(dataload_time)
                        self.train_batch(batch_index, batch, msg)
H
Hui Zhang 已提交
203
                        self.after_train_batch()
H
Hui Zhang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                        data_start_time = time.time()
                except Exception as e:
                    logger.error(e)
                    raise e

            with Timer("Eval Time Cost: {}"):
                total_loss, num_seen_utts = self.valid()
                if dist.get_world_size() > 1:
                    num_seen_utts = paddle.to_tensor(num_seen_utts)
                    # the default operator in all_reduce function is sum.
                    dist.all_reduce(num_seen_utts)
                    total_loss = paddle.to_tensor(total_loss)
                    dist.all_reduce(total_loss)
                    cv_loss = total_loss / num_seen_utts
                    cv_loss = float(cv_loss)
                else:
                    cv_loss = total_loss / num_seen_utts
H
Hui Zhang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        # train/valid dataset, return token ids
        self.train_loader = BatchDataLoader(
            json_file=config.data.train_manifest,
            train_mode=True,
            sortagrad=False,
            batch_size=config.collator.batch_size,
            maxlen_in=float('inf'),
            maxlen_out=float('inf'),
            minibatches=0,
242
            mini_batch_size=self.args.nprocs,
H
Hui Zhang 已提交
243 244 245 246 247 248 249
            batch_count='auto',
            batch_bins=0,
            batch_frames_in=0,
            batch_frames_out=0,
            batch_frames_inout=0,
            preprocess_conf=config.collator.augmentation_config,
            n_iter_processes=config.collator.num_workers,
H
fix  
Hui Zhang 已提交
250
            subsampling_factor=1,
H
Hui Zhang 已提交
251 252 253 254 255 256 257 258 259 260
            num_encs=1)

        self.valid_loader = BatchDataLoader(
            json_file=config.data.dev_manifest,
            train_mode=False,
            sortagrad=False,
            batch_size=config.collator.batch_size,
            maxlen_in=float('inf'),
            maxlen_out=float('inf'),
            minibatches=0,
261
            mini_batch_size=self.args.nprocs,
H
Hui Zhang 已提交
262 263 264 265 266 267
            batch_count='auto',
            batch_bins=0,
            batch_frames_in=0,
            batch_frames_out=0,
            batch_frames_inout=0,
            preprocess_conf=None,
H
Hui Zhang 已提交
268
            n_iter_processes=config.collator.num_workers,
H
Hui Zhang 已提交
269 270 271 272 273 274 275 276
            subsampling_factor=1,
            num_encs=1)

        # test dataset, return raw text
        self.test_loader = BatchDataLoader(
            json_file=config.data.test_manifest,
            train_mode=False,
            sortagrad=False,
277
            batch_size=config.decoding.batch_size,
H
Hui Zhang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
            maxlen_in=float('inf'),
            maxlen_out=float('inf'),
            minibatches=0,
            mini_batch_size=1,
            batch_count='auto',
            batch_bins=0,
            batch_frames_in=0,
            batch_frames_out=0,
            batch_frames_inout=0,
            preprocess_conf=None,
            n_iter_processes=1,
            subsampling_factor=1,
            num_encs=1)

        self.align_loader = BatchDataLoader(
            json_file=config.data.test_manifest,
            train_mode=False,
            sortagrad=False,
296
            batch_size=config.decoding.batch_size,
H
Hui Zhang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            maxlen_in=float('inf'),
            maxlen_out=float('inf'),
            minibatches=0,
            mini_batch_size=1,
            batch_count='auto',
            batch_bins=0,
            batch_frames_in=0,
            batch_frames_out=0,
            batch_frames_inout=0,
            preprocess_conf=None,
            n_iter_processes=1,
            subsampling_factor=1,
            num_encs=1)
        logger.info("Setup train/valid/test/align Dataloader!")

    def setup_model(self):
        config = self.config

        # model
        model_conf = config.model
H
Hui Zhang 已提交
317 318 319
        with UpdateConfig(model_conf):
            model_conf.input_dim = self.train_loader.feat_dim
            model_conf.output_dim = self.train_loader.vocab_size
H
Hui Zhang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        model = U2Model.from_config(model_conf)
        if self.parallel:
            model = paddle.DataParallel(model)
        layer_tools.print_params(model, logger.info)

        # lr
        scheduler_conf = config.scheduler_conf
        scheduler_args = {
            "learning_rate": scheduler_conf.lr,
            "warmup_steps": scheduler_conf.warmup_steps,
            "gamma": scheduler_conf.lr_decay,
            "d_model": model_conf.encoder_conf.output_size,
            "verbose": False,
        }
        lr_scheduler = LRSchedulerFactory.from_args(config.scheduler,
                                                    scheduler_args)

        # opt
        def optimizer_args(
                config,
                parameters,
                lr_scheduler=None, ):
            optim_conf = config.optim_conf
            return {
                "grad_clip": optim_conf.global_grad_clip,
                "weight_decay": optim_conf.weight_decay,
                "learning_rate": lr_scheduler,
                "parameters": parameters,
            }

        optimzer_args = optimizer_args(config, model.parameters(), lr_scheduler)
        optimizer = OptimizerFactory.from_args(config.optim, optimzer_args)

        self.model = model
        self.lr_scheduler = lr_scheduler
        self.optimizer = optimizer
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
                # 0: used for training, it's prohibited here.
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)
391 392 393 394
        self.text_feature = TextFeaturizer(
            unit_type=self.config.collator.unit_type,
            vocab_filepath=self.config.collator.vocab_filepath,
            spm_model_prefix=self.config.collator.spm_model_prefix)
H
Hui Zhang 已提交
395

396
    def id2token(self, texts, texts_len, text_feature):
H
Hui Zhang 已提交
397 398 399 400 401
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
402
            trans.append(text_feature.defeaturize(ids.numpy().tolist()))
H
Hui Zhang 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        return trans

    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
418 419
        target_transcripts = self.id2token(texts, texts_len, self.text_feature)
        result_transcripts, result_tokenids = self.model.decode(
H
Hui Zhang 已提交
420 421
            audio,
            audio_len,
422
            text_feature=self.text_feature,
H
Hui Zhang 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Hui Zhang 已提交
437 438 439
        for i, (utt, target, result, rec_tids) in enumerate(
                zip(utts, target_transcripts, result_transcripts,
                    result_tokenids)):
H
Hui Zhang 已提交
440 441 442 443 444
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
445 446 447 448 449 450
                fout.write({
                    "utt": utt,
                    "refs": [target],
                    "hyps": [result],
                    "hyps_tokenid": [rec_tids],
                })
H
Hui Zhang 已提交
451 452 453
            logger.info(f"Utt: {utt}")
            logger.info(f"Ref: {target}")
            logger.info(f"Hyp: {result}")
H
Hui Zhang 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

473
        stride_ms = self.config.collator.stride_ms
H
Hui Zhang 已提交
474 475 476 477
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
H
Hui Zhang 已提交
478
        with jsonlines.open(self.args.result_file, 'w') as fout:
H
Hui Zhang 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
                "decode_method":
                self.config.decoding.decoding_method,
            })
            f.write(data + '\n')

    @paddle.no_grad()
    def align(self):
H
Hui Zhang 已提交
530 531 532 533
        ctc_utils.ctc_align(
            self.model, self.align_loader, self.config.decoding.batch_size,
            self.align_loader.collate_fn.stride_ms,
            self.align_loader.collate_fn.vocab_list, self.args.result_file)
H
Hui Zhang 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
        infer_model = U2InferModel.from_pretrained(self.test_loader,
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
        feat_dim = self.test_loader.feat_dim
        input_spec = [
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

H
Hui Zhang 已提交
555
    @paddle.no_grad()
H
Hui Zhang 已提交
556 557 558 559 560 561 562 563
    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

564 565 566 567 568
    def setup_dict(self):
        # load dictionary for debug log
        self.args.char_list = load_dict(self.args.dict_path,
                                        "maskctc" in self.args.model_name)

H
Hui Zhang 已提交
569
    def setup(self):
570
        super().setup()
571
        self.setup_dict()