tensor_utils.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unility functions for Transformer."""
from typing import List
from typing import Tuple

import paddle

from deepspeech.utils.log import Log

22
__all__ = ["pad_sequence", "add_sos_eos", "th_accuracy", "has_tensor"]
23 24 25 26

logger = Log(__name__).getlog()


27 28 29 30 31 32 33 34 35 36 37 38 39 40
def has_tensor(val):
    if isinstance(val, (list, tuple)):
        for item in val:
            if has_tensor(item):
                return True
    elif isinstance(val, dict):
        for k, v in val.items():
            print(k)
            if has_tensor(v):
                return True
    else:
        return paddle.is_tensor(val)


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def pad_sequence(sequences: List[paddle.Tensor],
                 batch_first: bool=False,
                 padding_value: float=0.0) -> paddle.Tensor:
    r"""Pad a list of variable length Tensors with ``padding_value``

    ``pad_sequence`` stacks a list of Tensors along a new dimension,
    and pads them to equal length. For example, if the input is list of
    sequences with size ``L x *`` and if batch_first is False, and ``T x B x *``
    otherwise.

    `B` is batch size. It is equal to the number of elements in ``sequences``.
    `T` is length of the longest sequence.
    `L` is length of the sequence.
    `*` is any number of trailing dimensions, including none.

    Example:
        >>> from paddle.nn.utils.rnn import pad_sequence
        >>> a = paddle.ones(25, 300)
        >>> b = paddle.ones(22, 300)
        >>> c = paddle.ones(15, 300)
        >>> pad_sequence([a, b, c]).size()
        paddle.Tensor([25, 3, 300])

    Note:
        This function returns a Tensor of size ``T x B x *`` or ``B x T x *``
        where `T` is the length of the longest sequence. This function assumes
        trailing dimensions and type of all the Tensors in sequences are same.

    Args:
        sequences (list[Tensor]): list of variable length sequences.
        batch_first (bool, optional): output will be in ``B x T x *`` if True, or in
            ``T x B x *`` otherwise
        padding_value (float, optional): value for padded elements. Default: 0.

    Returns:
        Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.
        Tensor of size ``B x T x *`` otherwise
    """

    # assuming trailing dimensions and type of all the Tensors
    # in sequences are same and fetching those from sequences[0]
    max_size = sequences[0].size()
    # (TODO Hui Zhang): slice not supprot `end==start`
    # trailing_dims = max_size[1:]
    trailing_dims = max_size[1:] if max_size.ndim >= 2 else ()
H
Hui Zhang 已提交
86
    max_len = max([s.shape[0] for s in sequences])
87 88 89 90 91 92 93
    if batch_first:
        out_dims = (len(sequences), max_len) + trailing_dims
    else:
        out_dims = (max_len, len(sequences)) + trailing_dims

    out_tensor = sequences[0].new_full(out_dims, padding_value)
    for i, tensor in enumerate(sequences):
H
Hui Zhang 已提交
94
        length = tensor.shape[0]
95 96
        # use index notation to prevent duplicate references to the tensor
        if batch_first:
97 98 99 100 101 102
            # TODO (Hui Zhang): set_value op not supprot `end==start`
            # out_tensor[i, :length, ...] = tensor
            if length != 0:
                out_tensor[i, :length, ...] = tensor
            else:
                out_tensor[i, length, ...] = tensor
103
        else:
104 105 106 107 108 109
            # TODO (Hui Zhang): set_value op not supprot `end==start`
            # out_tensor[:length, i, ...] = tensor
            if length != 0:
                out_tensor[:length, i, ...] = tensor
            else:
                out_tensor[length, i, ...] = tensor
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    return out_tensor


def add_sos_eos(ys_pad: paddle.Tensor, sos: int, eos: int,
                ignore_id: int) -> Tuple[paddle.Tensor, paddle.Tensor]:
    """Add <sos> and <eos> labels.
    Args:
        ys_pad (paddle.Tensor): batch of padded target sequences (B, Lmax)
        sos (int): index of <sos>
        eos (int): index of <eeos>
        ignore_id (int): index of padding
    Returns:
        ys_in (paddle.Tensor) : (B, Lmax + 1)
        ys_out (paddle.Tensor) : (B, Lmax + 1)
    Examples:
        >>> sos_id = 10
        >>> eos_id = 11
        >>> ignore_id = -1
        >>> ys_pad
        tensor([[ 1,  2,  3,  4,  5],
                [ 4,  5,  6, -1, -1],
                [ 7,  8,  9, -1, -1]], dtype=paddle.int32)
        >>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
        >>> ys_in
        tensor([[10,  1,  2,  3,  4,  5],
                [10,  4,  5,  6, 11, 11],
                [10,  7,  8,  9, 11, 11]])
        >>> ys_out
        tensor([[ 1,  2,  3,  4,  5, 11],
                [ 4,  5,  6, 11, -1, -1],
                [ 7,  8,  9, 11, -1, -1]])
    """
    # TODO(Hui Zhang): using comment code, 
    #_sos = paddle.to_tensor(
    #    [sos], dtype=paddle.long, stop_gradient=True, place=ys_pad.place)
    #_eos = paddle.to_tensor(
    #    [eos], dtype=paddle.long, stop_gradient=True, place=ys_pad.place)
    #ys = [y[y != ignore_id] for y in ys_pad]  # parse padded ys
    #ys_in = [paddle.cat([_sos, y], dim=0) for y in ys]
    #ys_out = [paddle.cat([y, _eos], dim=0) for y in ys]
    #return pad_sequence(ys_in, padding_value=eos), pad_sequence(ys_out, padding_value=ignore_id)
H
Hui Zhang 已提交
152
    B = ys_pad.shape[0]
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    _sos = paddle.ones([B, 1], dtype=ys_pad.dtype) * sos
    _eos = paddle.ones([B, 1], dtype=ys_pad.dtype) * eos
    ys_in = paddle.cat([_sos, ys_pad], dim=1)
    mask_pad = (ys_in == ignore_id)
    ys_in = ys_in.masked_fill(mask_pad, eos)

    ys_out = paddle.cat([ys_pad, _eos], dim=1)
    ys_out = ys_out.masked_fill(mask_pad, eos)
    mask_eos = (ys_out == ignore_id)
    ys_out = ys_out.masked_fill(mask_eos, eos)
    ys_out = ys_out.masked_fill(mask_pad, ignore_id)
    return ys_in, ys_out


def th_accuracy(pad_outputs: paddle.Tensor,
                pad_targets: paddle.Tensor,
                ignore_label: int) -> float:
    """Calculate accuracy.
    Args:
        pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
        pad_targets (LongTensor): Target label tensors (B, Lmax, D).
        ignore_label (int): Ignore label id.
    Returns:
        float: Accuracy value (0.0 - 1.0).
    """
H
Hui Zhang 已提交
178 179
    pad_pred = pad_outputs.view(pad_targets.shape[0], pad_targets.shape[1],
                                pad_outputs.shape[1]).argmax(2)
180
    mask = pad_targets != ignore_label
H
Hui Zhang 已提交
181
    numerator = paddle.sum(
182
        pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
H
Hui Zhang 已提交
183
    denominator = paddle.sum(mask)
184
    return float(numerator) / float(denominator)