README.md 12.0 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9
# Speedyspeech with CSMSC
This example contains code used to train a [Speedyspeech](http://arxiv.org/abs/2008.03802) model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html). NOTE that we only implement the student part of the Speedyspeech model. The ground truth alignment used to train the model is extracted from the dataset using [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner).

## Dataset
### Download and Extract the datasaet
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/source).

### Get MFA result of CSMSC and Extract it
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for SPEEDYSPEECH.
小湉湉's avatar
小湉湉 已提交
10
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your own MFA model reference to  [use_mfa example](https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/other/use_mfa) of our repo.
H
Hui Zhang 已提交
11

小湉湉's avatar
小湉湉 已提交
12
## Get Started
H
Hui Zhang 已提交
13 14
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
小湉湉's avatar
小湉湉 已提交
15 16 17 18 19 20 21
Run the command below to
1. **source path**.
2. preprocess the dataset,
3. train the model.
4. synthesize wavs.
    - synthesize waveform from `metadata.jsonl`.
    - synthesize waveform from text file.
小湉湉's avatar
小湉湉 已提交
22
5. inference using static model.
H
Hui Zhang 已提交
23
```bash
小湉湉's avatar
小湉湉 已提交
24 25 26 27 28
./run.sh
```
### Preprocess the dataset
```bash
./local/preprocess.sh ${conf_path}
H
Hui Zhang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.

```text
dump
├── dev
│   ├── norm
│   └── raw
├── test
│   ├── norm
│   └── raw
└── train
    ├── norm
    ├── raw
    └── feats_stats.npy
```

The dataset is split into 3 parts, namely `train`, `dev` and `test`, each of which contains a `norm` and `raw` sub folder. The raw folder contains log magnitude of mel spectrogram of each utterances, while the norm folder contains normalized spectrogram. The statistics used to normalize the spectrogram is computed from the training set, which is located in `dump/train/feats_stats.npy`.

Also there is a `metadata.jsonl` in each subfolder. It is a table-like file which contains phones, tones, durations, path of spectrogram, and id of each utterance.

小湉湉's avatar
小湉湉 已提交
50 51
### Train the model
`./local/train.sh` calls `${BIN_DIR}/train.py`.
H
Hui Zhang 已提交
52
```bash
小湉湉's avatar
小湉湉 已提交
53
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
H
Hui Zhang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
```
Here's the complete help message.
```text
usage: train.py [-h] [--config CONFIG] [--train-metadata TRAIN_METADATA]
                     [--dev-metadata DEV_METADATA] [--output-dir OUTPUT_DIR]
                     [--device DEVICE] [--nprocs NPROCS] [--verbose VERBOSE]
                     [--use-relative-path USE_RELATIVE_PATH]
                     [--phones-dict PHONES_DICT] [--tones-dict TONES_DICT]

Train a Speedyspeech model with sigle speaker dataset.

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       config file.
  --train-metadata TRAIN_METADATA
                        training data.
  --dev-metadata DEV_METADATA
                        dev data.
  --output-dir OUTPUT_DIR
                        output dir.
  --device DEVICE       device type to use.
  --nprocs NPROCS       number of processes.
  --verbose VERBOSE     verbose.
  --use-relative-path USE_RELATIVE_PATH
                        whether use relative path in metadata
  --phones-dict PHONES_DICT
                        phone vocabulary file.
  --tones-dict TONES_DICT
                        tone vocabulary file.
```

1. `--config` is a config file in yaml format to overwrite the default config, which can be found at `conf/default.yaml`.
2. `--train-metadata` and `--dev-metadata` should be the metadata file in the normalized subfolder of `train` and `dev` in the `dump` folder.
3. `--output-dir` is the directory to save the results of the experiment. Checkpoints are save in `checkpoints/` inside this directory.
4. `--device` is the type of the device to run the experiment, 'cpu' or 'gpu' are supported.
5. `--nprocs` is the number of processes to run in parallel, note that nprocs > 1 is only supported when `--device` is 'gpu'.
6. `--phones-dict` is the path of the phone vocabulary file.
7. `--tones-dict` is the path of the tone vocabulary file.

小湉湉's avatar
小湉湉 已提交
93
### Synthesize
小湉湉's avatar
小湉湉 已提交
94
We use [parallel wavegan](https://github.com/PaddlePaddle/DeepSpeech/tree/develop/examples/csmsc/voc1) as the neural vocoder.
H
Hui Zhang 已提交
95 96 97 98 99 100 101 102 103 104 105
Download pretrained parallel wavegan model from [pwg_baker_ckpt_0.4.zip](https://paddlespeech.bj.bcebos.com/Parakeet/pwg_baker_ckpt_0.4.zip) and unzip it.
```bash
unzip pwg_baker_ckpt_0.4.zip
```
Parallel WaveGAN checkpoint contains files listed below.
```text
pwg_baker_ckpt_0.4
├── pwg_default.yaml               # default config used to train parallel wavegan
├── pwg_snapshot_iter_400000.pdz   # model parameters of parallel wavegan
└── pwg_stats.npy                  # statistics used to normalize spectrogram when training parallel wavegan
```
小湉湉's avatar
小湉湉 已提交
106
`./local/synthesize.sh` calls `${BIN_DIR}/synthesize.py`, which can synthesize waveform from `metadata.jsonl`.
H
Hui Zhang 已提交
107
```bash
小湉湉's avatar
小湉湉 已提交
108
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name}
H
Hui Zhang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
```
```text
usage: synthesize.py [-h] [--speedyspeech-config SPEEDYSPEECH_CONFIG]
                     [--speedyspeech-checkpoint SPEEDYSPEECH_CHECKPOINT]
                     [--speedyspeech-stat SPEEDYSPEECH_STAT]
                     [--pwg-config PWG_CONFIG]
                     [--pwg-checkpoint PWG_CHECKPOINT] [--pwg-stat PWG_STAT]
                     [--phones-dict PHONES_DICT] [--tones-dict TONES_DICT]
                     [--test-metadata TEST_METADATA] [--output-dir OUTPUT_DIR]
                     [--inference-dir INFERENCE_DIR] [--device DEVICE]
                     [--verbose VERBOSE]

Synthesize with speedyspeech & parallel wavegan.

optional arguments:
  -h, --help            show this help message and exit
  --speedyspeech-config SPEEDYSPEECH_CONFIG
                        config file for speedyspeech.
  --speedyspeech-checkpoint SPEEDYSPEECH_CHECKPOINT
                        speedyspeech checkpoint to load.
  --speedyspeech-stat SPEEDYSPEECH_STAT
                        mean and standard deviation used to normalize
                        spectrogram when training speedyspeech.
  --pwg-config PWG_CONFIG
                        config file for parallelwavegan.
  --pwg-checkpoint PWG_CHECKPOINT
                        parallel wavegan generator parameters to load.
  --pwg-stat PWG_STAT   mean and standard deviation used to normalize
                        spectrogram when training speedyspeech.
  --phones-dict PHONES_DICT
                        phone vocabulary file.
  --tones-dict TONES_DICT
                        tone vocabulary file.
  --test-metadata TEST_METADATA
                        test metadata
  --output-dir OUTPUT_DIR
                        output dir
  --inference-dir INFERENCE_DIR
                        dir to save inference models
  --device DEVICE       device type to use
  --verbose VERBOSE     verbose
```
小湉湉's avatar
小湉湉 已提交
151
`./local/synthesize_e2e.sh` calls `${BIN_DIR}/synthesize_e2e.py`, which can synthesize waveform from text file.
H
Hui Zhang 已提交
152
```bash
小湉湉's avatar
小湉湉 已提交
153
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name}
H
Hui Zhang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
```
```text
usage: synthesize_e2e.py [-h] [--speedyspeech-config SPEEDYSPEECH_CONFIG]
                         [--speedyspeech-checkpoint SPEEDYSPEECH_CHECKPOINT]
                         [--speedyspeech-stat SPEEDYSPEECH_STAT]
                         [--pwg-config PWG_CONFIG]
                         [--pwg-checkpoint PWG_CHECKPOINT]
                         [--pwg-stat PWG_STAT] [--text TEXT]
                         [--phones-dict PHONES_DICT] [--tones-dict TONES_DICT]
                         [--output-dir OUTPUT_DIR]
                         [--inference-dir INFERENCE_DIR] [--device DEVICE]
                         [--verbose VERBOSE]

Synthesize with speedyspeech & parallel wavegan.

optional arguments:
  -h, --help            show this help message and exit
  --speedyspeech-config SPEEDYSPEECH_CONFIG
                        config file for speedyspeech.
  --speedyspeech-checkpoint SPEEDYSPEECH_CHECKPOINT
                        speedyspeech checkpoint to load.
  --speedyspeech-stat SPEEDYSPEECH_STAT
                        mean and standard deviation used to normalize
                        spectrogram when training speedyspeech.
  --pwg-config PWG_CONFIG
                        config file for parallelwavegan.
  --pwg-checkpoint PWG_CHECKPOINT
                        parallel wavegan checkpoint to load.
  --pwg-stat PWG_STAT   mean and standard deviation used to normalize
                        spectrogram when training speedyspeech.
  --text TEXT           text to synthesize, a 'utt_id sentence' pair per line
  --phones-dict PHONES_DICT
                        phone vocabulary file.
  --tones-dict TONES_DICT
                        tone vocabulary file.
  --output-dir OUTPUT_DIR
                        output dir
  --inference-dir INFERENCE_DIR
                        dir to save inference models
  --device DEVICE       device type to use
  --verbose VERBOSE     verbose
```
1. `--speedyspeech-config`, `--speedyspeech-checkpoint`, `--speedyspeech-stat` are arguments for speedyspeech, which correspond to the 3 files in the speedyspeech pretrained model.
2. `--pwg-config`, `--pwg-checkpoint`, `--pwg-stat` are arguments for parallel wavegan, which correspond to the 3 files in the parallel wavegan pretrained model.
3. `--text` is the text file, which contains sentences to synthesize.
4. `--output-dir` is the directory to save synthesized audio files.
5. `--inference-dir` is the directory to save exported model, which can be used with paddle infernece.
6. `--device` is the type of device to run synthesis, 'cpu' and 'gpu' are supported. 'gpu' is recommended for faster synthesis.
小湉湉's avatar
小湉湉 已提交
202 203 204 205 206 207 208 209 210 211 212 213
7. `--phones-dict` is the path of the phone vocabulary file.
8. `--tones-dict` is the path of the tone vocabulary file.

### Inference
After Synthesize, we will get static models of speedyspeech and pwgan in `${train_output_path}/inference`.
`./local/inference.sh` calls `${BIN_DIR}/inference.py`, which provides a paddle static model inference example for speedyspeech + pwgan synthesize.
```bash
CUDA_VISIBLE_DEVICES=${gpus} ./local/inference.sh ${train_output_path}
```

## Pretrained Model
Pretrained SpeedySpeech model with no silence in the edge of audios. [speedyspeech_nosil_baker_ckpt_0.5.zip](https://paddlespeech.bj.bcebos.com/Parakeet/speedyspeech_nosil_baker_ckpt_0.5.zip)
H
Hui Zhang 已提交
214

小湉湉's avatar
小湉湉 已提交
215 216 217 218 219 220 221 222 223 224
SpeedySpeech checkpoint contains files listed below.
```text
speedyspeech_nosil_baker_ckpt_0.5
├── default.yaml            # default config used to train speedyspeech
├── feats_stats.npy         # statistics used to normalize spectrogram when training speedyspeech
├── phone_id_map.txt        # phone vocabulary file when training speedyspeech
├── snapshot_iter_11400.pdz # model parameters and optimizer states
└── tone_id_map.txt         # tone vocabulary file when training speedyspeech
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained speedyspeech and parallel wavegan models.
H
Hui Zhang 已提交
225
```bash
226 227
source path.sh

H
Hui Zhang 已提交
228 229
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
小湉湉's avatar
小湉湉 已提交
230
python3 ${BIN_DIR}/synthesize_e2e.py \
H
Hui Zhang 已提交
231 232 233 234 235 236
  --speedyspeech-config=speedyspeech_nosil_baker_ckpt_0.5/default.yaml \
  --speedyspeech-checkpoint=speedyspeech_nosil_baker_ckpt_0.5/snapshot_iter_11400.pdz \
  --speedyspeech-stat=speedyspeech_nosil_baker_ckpt_0.5/feats_stats.npy \
  --pwg-config=pwg_baker_ckpt_0.4/pwg_default.yaml \
  --pwg-checkpoint=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
  --pwg-stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
小湉湉's avatar
小湉湉 已提交
237
  --text=${BIN_DIR}/../sentences.txt \
H
Hui Zhang 已提交
238 239 240 241 242 243
  --output-dir=exp/default/test_e2e \
  --inference-dir=exp/default/inference \
  --device="gpu" \
  --phones-dict=speedyspeech_nosil_baker_ckpt_0.5/phone_id_map.txt \
  --tones-dict=speedyspeech_nosil_baker_ckpt_0.5/tone_id_map.txt
```