vector_engine.py 7.0 KB
Newer Older
X
xiongxinlei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
from collections import OrderedDict

import numpy as np
import paddle

from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddlespeech.cli.log import logger
from paddlespeech.cli.vector.infer import VectorExecutor
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.vector.io.batch import feature_normalize


class PaddleVectorConnectionHandler:
    def __init__(self, vector_engine):
        """The PaddleSpeech Vector Server Connection Handler
           This connection process every server request
        Args:
            vector_engine (VectorEngine): The Vector engine
        """
        super().__init__()
        logger.info(
            "Create PaddleVectorConnectionHandler to process the vector request")
        self.vector_engine = vector_engine
        self.executor = self.vector_engine.executor
        self.task = self.vector_engine.executor.task
        self.model = self.vector_engine.executor.model
        self.config = self.vector_engine.executor.config

        self._inputs = OrderedDict()
        self._outputs = OrderedDict()

    @paddle.no_grad()
    def run(self, audio_data, task="spk"):
        """The connection process the http request audio

        Args:
            audio_data (bytes): base64.b64decode

        Returns:
            str: the punctuation text
        """
        logger.info(
            f"start to extract the do vector {self.task} from the http request")
        if self.task == "spk" and task == "spk":
            embedding = self.extract_audio_embedding(audio_data)
            return embedding
        else:
            logger.error(
                "The request task is not matched with server model task")
            logger.error(
                f"The server model task is: {self.task}, but the request task is: {task}"
            )

        return np.array([
            0.0,
        ])

    @paddle.no_grad()
    def get_enroll_test_score(self, enroll_audio, test_audio):
        """Get the enroll and test audio score

        Args:
            enroll_audio (str): the base64 format enroll audio
            test_audio (str): the base64 format test audio

        Returns:
            float: the score between enroll and test audio
        """
        logger.info("start to extract the enroll audio embedding")
        enroll_emb = self.extract_audio_embedding(enroll_audio)

        logger.info("start to extract the test audio embedding")
        test_emb = self.extract_audio_embedding(test_audio)

        logger.info(
            "start to get the score between the enroll and test embedding")
        score = self.executor.get_embeddings_score(enroll_emb, test_emb)

        logger.info(f"get the enroll vs test score: {score}")
        return score

    @paddle.no_grad()
    def extract_audio_embedding(self, audio: str, sample_rate: int=16000):
        """extract the audio embedding

        Args:
102 103
            audio (str): the audio data
            sample_rate (int, optional): the audio sample rate. Defaults to 16000.
X
xiongxinlei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        """
        # we can not reuse the cache io.BytesIO(audio) data, 
        # because the soundfile will change the io.BytesIO(audio) to the end
        # thus we should convert the base64 string to io.BytesIO when we need the audio data
        if not self.executor._check(io.BytesIO(audio), sample_rate):
            logger.info("check the audio sample rate occurs error")
            return np.array([0.0])

        waveform, sr = load_audio(io.BytesIO(audio))
        logger.info(f"load the audio sample points, shape is: {waveform.shape}")

        # stage 2: get the audio feat
        # Note: Now we only support fbank feature
        try:
            feats = melspectrogram(
                x=waveform,
                sr=self.config.sr,
                n_mels=self.config.n_mels,
                window_size=self.config.window_size,
                hop_length=self.config.hop_size)
            logger.info(f"extract the audio feats, shape is: {feats.shape}")
        except Exception as e:
            logger.info(f"feats occurs exception {e}")
            sys.exit(-1)

        feats = paddle.to_tensor(feats).unsqueeze(0)
        # in inference period, the lengths is all one without padding
        lengths = paddle.ones([1])

        # stage 3: we do feature normalize,
        #          Now we assume that the feats must do normalize
        feats = feature_normalize(feats, mean_norm=True, std_norm=False)

        # stage 4: store the feats and length in the _inputs,
        #          which will be used in other function
        logger.info(f"feats shape: {feats.shape}")
        logger.info("audio extract the feats success")

        logger.info("start to extract the audio embedding")
        embedding = self.model.backbone(feats, lengths).squeeze().numpy()
        logger.info(f"embedding size: {embedding.shape}")

        return embedding


class VectorServerExecutor(VectorExecutor):
    def __init__(self):
        """The wrapper for TextEcutor
        """
        super().__init__()
        pass


class VectorEngine(BaseEngine):
    def __init__(self):
        """The Vector Engine
        """
        super(VectorEngine, self).__init__()
        logger.info("Create the VectorEngine Instance")

    def init(self, config: dict):
        """Init the Vector Engine

        Args:
            config (dict): The server configuation

        Returns:
            bool: The engine instance flag
        """
        logger.info("Init the vector engine")
        try:
            self.config = config
            if self.config.device:
                self.device = self.config.device
            else:
                self.device = paddle.get_device()

            paddle.set_device(self.device)
            logger.info(f"Vector Engine set the device: {self.device}")
        except BaseException as e:
            logger.error(
                "Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
            )
            logger.error("Initialize Vector server engine Failed on device: %s."
                         % (self.device))
            return False

        self.executor = VectorServerExecutor()

        self.executor._init_from_path(
            model_type=config.model_type,
            cfg_path=config.cfg_path,
            ckpt_path=config.ckpt_path,
            task=config.task)

        logger.info("Init the Vector engine successfully")
        return True