adversarial_loss.py 4.3 KB
Newer Older
小湉湉's avatar
小湉湉 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
小湉湉's avatar
小湉湉 已提交
14
# Modified from espnet(https://github.com/espnet/espnet)
小湉湉's avatar
小湉湉 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
"""Adversarial loss modules."""
import paddle
import paddle.nn.functional as F
from paddle import nn


class GeneratorAdversarialLoss(nn.Layer):
    """Generator adversarial loss module."""

    def __init__(
            self,
            average_by_discriminators=True,
            loss_type="mse", ):
        """Initialize GeneratorAversarialLoss module."""
        super().__init__()
        self.average_by_discriminators = average_by_discriminators
        assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
        if loss_type == "mse":
            self.criterion = self._mse_loss
        else:
            self.criterion = self._hinge_loss

    def forward(self, outputs):
        """Calcualate generator adversarial loss.
        Parameters
        ----------
        outputs: Tensor or List
        Discriminator outputs or list of discriminator outputs.
        Returns
        ----------
        Tensor
            Generator adversarial loss value.
        """
        if isinstance(outputs, (tuple, list)):
            adv_loss = 0.0
            for i, outputs_ in enumerate(outputs):
                if isinstance(outputs_, (tuple, list)):
                    # case including feature maps
                    outputs_ = outputs_[-1]
                adv_loss += self.criterion(outputs_)
            if self.average_by_discriminators:
                adv_loss /= i + 1
        else:
            adv_loss = self.criterion(outputs)

        return adv_loss

    def _mse_loss(self, x):
        return F.mse_loss(x, paddle.ones_like(x))

    def _hinge_loss(self, x):
        return -x.mean()


class DiscriminatorAdversarialLoss(nn.Layer):
    """Discriminator adversarial loss module."""

    def __init__(
            self,
            average_by_discriminators=True,
            loss_type="mse", ):
        """Initialize DiscriminatorAversarialLoss module."""
        super().__init__()
        self.average_by_discriminators = average_by_discriminators
        assert loss_type in ["mse"], f"{loss_type} is not supported."
        if loss_type == "mse":
            self.fake_criterion = self._mse_fake_loss
            self.real_criterion = self._mse_real_loss

    def forward(self, outputs_hat, outputs):
        """Calcualate discriminator adversarial loss.
        Parameters
        ----------
        outputs_hat : Tensor or list
            Discriminator outputs or list of
            discriminator outputs calculated from generator outputs.
        outputs : Tensor or list
            Discriminator outputs or list of
            discriminator outputs calculated from groundtruth.
        Returns
        ----------
        Tensor
            Discriminator real loss value.
        Tensor
            Discriminator fake loss value.
        """
        if isinstance(outputs, (tuple, list)):
            real_loss = 0.0
            fake_loss = 0.0
            for i, (outputs_hat_,
                    outputs_) in enumerate(zip(outputs_hat, outputs)):
                if isinstance(outputs_hat_, (tuple, list)):
                    # case including feature maps
                    outputs_hat_ = outputs_hat_[-1]
                    outputs_ = outputs_[-1]
                real_loss += self.real_criterion(outputs_)
                fake_loss += self.fake_criterion(outputs_hat_)
            if self.average_by_discriminators:
                fake_loss /= i + 1
                real_loss /= i + 1
        else:
            real_loss = self.real_criterion(outputs)
            fake_loss = self.fake_criterion(outputs_hat)

        return real_loss, fake_loss

    def _mse_real_loss(self, x):
        return F.mse_loss(x, paddle.ones_like(x))

    def _mse_fake_loss(self, x):
        return F.mse_loss(x, paddle.zeros_like(x))