transformer_tts.py 39.9 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
小湉湉's avatar
小湉湉 已提交
14
# Modified from espnet(https://github.com/espnet/espnet)
H
Hui Zhang 已提交
15 16 17 18
"""Fastspeech2 related modules for paddle"""
from typing import Dict
from typing import Sequence
from typing import Tuple
小湉湉's avatar
小湉湉 已提交
19

H
Hui Zhang 已提交
20 21 22
import numpy
import paddle
import paddle.nn.functional as F
小湉湉's avatar
小湉湉 已提交
23
from paddle import nn
H
Hui Zhang 已提交
24 25
from typeguard import check_argument_types

26 27 28 29 30 31 32 33 34 35 36 37 38
from paddlespeech.t2s.modules.fastspeech2_transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.fastspeech2_transformer.decoder import Decoder
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import ScaledPositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.encoder import Encoder
from paddlespeech.t2s.modules.fastspeech2_transformer.mask import subsequent_mask
from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
from paddlespeech.t2s.modules.style_encoder import StyleEncoder
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.tacotron2.decoder import Prenet as DecoderPrenet
from paddlespeech.t2s.modules.tacotron2.encoder import Encoder as EncoderPrenet
H
Hui Zhang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084


class TransformerTTS(nn.Layer):
    """TTS-Transformer module.

    This is a module of text-to-speech Transformer described in `Neural Speech Synthesis
    with Transformer Network`_, which convert the sequence of tokens into the sequence
    of Mel-filterbanks.

    .. _`Neural Speech Synthesis with Transformer Network`:
        https://arxiv.org/pdf/1809.08895.pdf

    Parameters
    ----------
    idim : int
        Dimension of the inputs.
    odim : int
        Dimension of the outputs.
    embed_dim : int, optional
        Dimension of character embedding.
    eprenet_conv_layers : int, optional
        Number of encoder prenet convolution layers.
    eprenet_conv_chans : int, optional
        Number of encoder prenet convolution channels.
    eprenet_conv_filts : int, optional
        Filter size of encoder prenet convolution.
    dprenet_layers : int, optional
        Number of decoder prenet layers.
    dprenet_units : int, optional
        Number of decoder prenet hidden units.
    elayers : int, optional
        Number of encoder layers.
    eunits : int, optional
        Number of encoder hidden units.
    adim : int, optional
        Number of attention transformation dimensions.
    aheads : int, optional
        Number of heads for multi head attention.
    dlayers : int, optional
        Number of decoder layers.
    dunits : int, optional
        Number of decoder hidden units.
    postnet_layers : int, optional
        Number of postnet layers.
    postnet_chans : int, optional
        Number of postnet channels.
    postnet_filts : int, optional
        Filter size of postnet.
    use_scaled_pos_enc : pool, optional
        Whether to use trainable scaled positional encoding.
    use_batch_norm : bool, optional
        Whether to use batch normalization in encoder prenet.
    encoder_normalize_before : bool, optional
        Whether to perform layer normalization before encoder block.
    decoder_normalize_before : bool, optional
        Whether to perform layer normalization before decoder block.
    encoder_concat_after : bool, optional
        Whether to concatenate attention layer's input and output in encoder.
    decoder_concat_after : bool, optional
        Whether to concatenate attention layer's input and output in decoder.
    positionwise_layer_type : str, optional
        Position-wise operation type.
    positionwise_conv_kernel_size : int, optional
        Kernel size in position wise conv 1d.
    reduction_factor : int, optional
        Reduction factor.
    spk_embed_dim : int, optional
        Number of speaker embedding dimenstions.
    spk_embed_integration_type : str, optional
        How to integrate speaker embedding.
    use_gst : str, optional
        Whether to use global style token.
    gst_tokens : int, optional
        The number of GST embeddings.
    gst_heads : int, optional
        The number of heads in GST multihead attention.
    gst_conv_layers : int, optional
        The number of conv layers in GST.
    gst_conv_chans_list : Sequence[int], optional
            List of the number of channels of conv layers in GST.
    gst_conv_kernel_size : int, optional
        Kernal size of conv layers in GST.
    gst_conv_stride : int, optional
        Stride size of conv layers in GST.
    gst_gru_layers : int, optional
        The number of GRU layers in GST.
    gst_gru_units : int, optional
        The number of GRU units in GST.
    transformer_lr : float, optional
        Initial value of learning rate.
    transformer_warmup_steps : int, optional
        Optimizer warmup steps.
    transformer_enc_dropout_rate : float, optional
        Dropout rate in encoder except attention and positional encoding.
    transformer_enc_positional_dropout_rate : float, optional
        Dropout rate after encoder positional encoding.
    transformer_enc_attn_dropout_rate : float, optional
        Dropout rate in encoder self-attention module.
    transformer_dec_dropout_rate : float, optional
        Dropout rate in decoder except attention & positional encoding.
    transformer_dec_positional_dropout_rate : float, optional
        Dropout rate after decoder positional encoding.
    transformer_dec_attn_dropout_rate : float, optional
        Dropout rate in deocoder self-attention module.
    transformer_enc_dec_attn_dropout_rate : float, optional
        Dropout rate in encoder-deocoder attention module.
    init_type : str, optional
        How to initialize transformer parameters.
    init_enc_alpha : float, optional
        Initial value of alpha in scaled pos encoding of the encoder.
    init_dec_alpha : float, optional
        Initial value of alpha in scaled pos encoding of the decoder.
    eprenet_dropout_rate : float, optional
        Dropout rate in encoder prenet.
    dprenet_dropout_rate : float, optional
        Dropout rate in decoder prenet.
    postnet_dropout_rate : float, optional
        Dropout rate in postnet.
    use_masking : bool, optional
        Whether to apply masking for padded part in loss calculation.
    use_weighted_masking : bool, optional
        Whether to apply weighted masking in loss calculation.
    bce_pos_weight : float, optional
        Positive sample weight in bce calculation (only for use_masking=true).
    loss_type : str, optional
        How to calculate loss.
    use_guided_attn_loss : bool, optional
        Whether to use guided attention loss.
    num_heads_applied_guided_attn : int, optional
        Number of heads in each layer to apply guided attention loss.
    num_layers_applied_guided_attn : int, optional
        Number of layers to apply guided attention loss.
        List of module names to apply guided attention loss.
    """

    def __init__(
            self,
            # network structure related
            idim: int,
            odim: int,
            embed_dim: int=512,
            eprenet_conv_layers: int=3,
            eprenet_conv_chans: int=256,
            eprenet_conv_filts: int=5,
            dprenet_layers: int=2,
            dprenet_units: int=256,
            elayers: int=6,
            eunits: int=1024,
            adim: int=512,
            aheads: int=4,
            dlayers: int=6,
            dunits: int=1024,
            postnet_layers: int=5,
            postnet_chans: int=256,
            postnet_filts: int=5,
            positionwise_layer_type: str="conv1d",
            positionwise_conv_kernel_size: int=1,
            use_scaled_pos_enc: bool=True,
            use_batch_norm: bool=True,
            encoder_normalize_before: bool=True,
            decoder_normalize_before: bool=True,
            encoder_concat_after: bool=False,
            decoder_concat_after: bool=False,
            reduction_factor: int=1,
            spk_embed_dim: int=None,
            spk_embed_integration_type: str="add",
            use_gst: bool=False,
            gst_tokens: int=10,
            gst_heads: int=4,
            gst_conv_layers: int=6,
            gst_conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
            gst_conv_kernel_size: int=3,
            gst_conv_stride: int=2,
            gst_gru_layers: int=1,
            gst_gru_units: int=128,
            # training related
            transformer_enc_dropout_rate: float=0.1,
            transformer_enc_positional_dropout_rate: float=0.1,
            transformer_enc_attn_dropout_rate: float=0.1,
            transformer_dec_dropout_rate: float=0.1,
            transformer_dec_positional_dropout_rate: float=0.1,
            transformer_dec_attn_dropout_rate: float=0.1,
            transformer_enc_dec_attn_dropout_rate: float=0.1,
            eprenet_dropout_rate: float=0.5,
            dprenet_dropout_rate: float=0.5,
            postnet_dropout_rate: float=0.5,
            init_type: str="xavier_uniform",
            init_enc_alpha: float=1.0,
            init_dec_alpha: float=1.0,
            use_guided_attn_loss: bool=True,
            num_heads_applied_guided_attn: int=2,
            num_layers_applied_guided_attn: int=2, ):
        """Initialize Transformer module."""
        assert check_argument_types()
        super().__init__()

        # store hyperparameters
        self.idim = idim
        self.odim = odim
        self.eos = idim - 1
        self.spk_embed_dim = spk_embed_dim
        self.reduction_factor = reduction_factor
        self.use_gst = use_gst
        self.use_scaled_pos_enc = use_scaled_pos_enc
        self.use_guided_attn_loss = use_guided_attn_loss
        if self.use_guided_attn_loss:
            if num_layers_applied_guided_attn == -1:
                self.num_layers_applied_guided_attn = elayers
            else:
                self.num_layers_applied_guided_attn = num_layers_applied_guided_attn
            if num_heads_applied_guided_attn == -1:
                self.num_heads_applied_guided_attn = aheads
            else:
                self.num_heads_applied_guided_attn = num_heads_applied_guided_attn
        if self.spk_embed_dim is not None:
            self.spk_embed_integration_type = spk_embed_integration_type

        # use idx 0 as padding idx
        self.padding_idx = 0
        # set_global_initializer 会影响后面的全局,包括 create_parameter
        initialize(self, init_type)
        # get positional encoding class
        pos_enc_class = (ScaledPositionalEncoding
                         if self.use_scaled_pos_enc else PositionalEncoding)

        # define transformer encoder
        if eprenet_conv_layers != 0:
            # encoder prenet
            encoder_input_layer = nn.Sequential(
                EncoderPrenet(
                    idim=idim,
                    embed_dim=embed_dim,
                    elayers=0,
                    econv_layers=eprenet_conv_layers,
                    econv_chans=eprenet_conv_chans,
                    econv_filts=eprenet_conv_filts,
                    use_batch_norm=use_batch_norm,
                    dropout_rate=eprenet_dropout_rate,
                    padding_idx=self.padding_idx, ),
                nn.Linear(eprenet_conv_chans, adim), )
        else:
            encoder_input_layer = nn.Embedding(
                num_embeddings=idim,
                embedding_dim=adim,
                padding_idx=self.padding_idx)
        self.encoder = Encoder(
            idim=idim,
            attention_dim=adim,
            attention_heads=aheads,
            linear_units=eunits,
            num_blocks=elayers,
            input_layer=encoder_input_layer,
            dropout_rate=transformer_enc_dropout_rate,
            positional_dropout_rate=transformer_enc_positional_dropout_rate,
            attention_dropout_rate=transformer_enc_attn_dropout_rate,
            pos_enc_class=pos_enc_class,
            normalize_before=encoder_normalize_before,
            concat_after=encoder_concat_after,
            positionwise_layer_type=positionwise_layer_type,
            positionwise_conv_kernel_size=positionwise_conv_kernel_size, )

        # define GST
        if self.use_gst:
            self.gst = StyleEncoder(
                idim=odim,  # the input is mel-spectrogram
                gst_tokens=gst_tokens,
                gst_token_dim=adim,
                gst_heads=gst_heads,
                conv_layers=gst_conv_layers,
                conv_chans_list=gst_conv_chans_list,
                conv_kernel_size=gst_conv_kernel_size,
                conv_stride=gst_conv_stride,
                gru_layers=gst_gru_layers,
                gru_units=gst_gru_units, )

        # define projection layer
        if self.spk_embed_dim is not None:
            if self.spk_embed_integration_type == "add":
                self.projection = nn.Linear(self.spk_embed_dim, adim)
            else:
                self.projection = nn.Linear(adim + self.spk_embed_dim, adim)

        # define transformer decoder
        if dprenet_layers != 0:
            # decoder prenet
            decoder_input_layer = nn.Sequential(
                DecoderPrenet(
                    idim=odim,
                    n_layers=dprenet_layers,
                    n_units=dprenet_units,
                    dropout_rate=dprenet_dropout_rate, ),
                nn.Linear(dprenet_units, adim), )
        else:
            decoder_input_layer = "linear"
        self.decoder = Decoder(
            odim=odim,  # odim is needed when no prenet is used
            attention_dim=adim,
            attention_heads=aheads,
            linear_units=dunits,
            num_blocks=dlayers,
            dropout_rate=transformer_dec_dropout_rate,
            positional_dropout_rate=transformer_dec_positional_dropout_rate,
            self_attention_dropout_rate=transformer_dec_attn_dropout_rate,
            src_attention_dropout_rate=transformer_enc_dec_attn_dropout_rate,
            input_layer=decoder_input_layer,
            use_output_layer=False,
            pos_enc_class=pos_enc_class,
            normalize_before=decoder_normalize_before,
            concat_after=decoder_concat_after, )

        # define final projection
        self.feat_out = nn.Linear(adim, odim * reduction_factor)
        self.prob_out = nn.Linear(adim, reduction_factor)

        # define postnet
        self.postnet = (None if postnet_layers == 0 else Postnet(
            idim=idim,
            odim=odim,
            n_layers=postnet_layers,
            n_chans=postnet_chans,
            n_filts=postnet_filts,
            use_batch_norm=use_batch_norm,
            dropout_rate=postnet_dropout_rate, ))

        # 闭合的 initialize() 中的 set_global_initializer 的作用域,防止其影响到 self._reset_parameters()
        nn.initializer.set_global_initializer(None)

        self._reset_parameters(
            init_enc_alpha=init_enc_alpha,
            init_dec_alpha=init_dec_alpha, )

    def _reset_parameters(self, init_enc_alpha: float, init_dec_alpha: float):

        # initialize alpha in scaled positional encoding
        if self.use_scaled_pos_enc:
            init_enc_alpha = paddle.to_tensor(init_enc_alpha)
            self.encoder.embed[-1].alpha = paddle.create_parameter(
                shape=init_enc_alpha.shape,
                dtype=str(init_enc_alpha.numpy().dtype),
                default_initializer=paddle.nn.initializer.Assign(
                    init_enc_alpha))

            init_dec_alpha = paddle.to_tensor(init_dec_alpha)
            self.decoder.embed[-1].alpha = paddle.create_parameter(
                shape=init_dec_alpha.shape,
                dtype=str(init_dec_alpha.numpy().dtype),
                default_initializer=paddle.nn.initializer.Assign(
                    init_dec_alpha))

    def forward(
            self,
            text: paddle.Tensor,
            text_lengths: paddle.Tensor,
            speech: paddle.Tensor,
            speech_lengths: paddle.Tensor,
            spembs: paddle.Tensor=None,
    ) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
        """Calculate forward propagation.

        Parameters
        ----------
        text : Tensor(int64)
            Batch of padded character ids (B, Tmax).
        text_lengths : Tensor(int64)
            Batch of lengths of each input batch (B,).
        speech : Tensor
            Batch of padded target features (B, Lmax, odim).
        speech_lengths : Tensor(int64)
            Batch of the lengths of each target (B,).
        spembs : Tensor, optional
            Batch of speaker embeddings (B, spk_embed_dim).

        Returns
        ----------
        Tensor
            Loss scalar value.
        Dict
            Statistics to be monitored.

        """
        # input of embedding must be int64
        text_lengths = paddle.cast(text_lengths, 'int64')

        # Add eos at the last of sequence
        text = numpy.pad(text.numpy(), ((0, 0), (0, 1)), 'constant')
        xs = paddle.to_tensor(text, dtype='int64')
        for i, l in enumerate(text_lengths):
            xs[i, l] = self.eos
        ilens = text_lengths + 1

        ys = speech
        olens = paddle.cast(speech_lengths, 'int64')

        # make labels for stop prediction
        labels = make_pad_mask(olens - 1)
        labels = numpy.pad(
            labels.numpy(), ((0, 0), (0, 1)), 'constant', constant_values=1.0)
        labels = paddle.to_tensor(labels)
        labels = paddle.cast(labels, dtype="float32")
        # labels = F.pad(labels, [0, 1], "constant", 1.0)

        # calculate transformer outputs
        after_outs, before_outs, logits = self._forward(xs, ilens, ys, olens,
                                                        spembs)

        # modifiy mod part of groundtruth

        if self.reduction_factor > 1:
            olens = paddle.to_tensor(
                [olen - olen % self.reduction_factor for olen in olens.numpy()])
            max_olen = max(olens)
            ys = ys[:, :max_olen]
            labels = labels[:, :max_olen]
            labels[:, -1] = 1.0  # make sure at least one frame has 1
        need_dict = {}
        need_dict['encoder'] = self.encoder
        need_dict['decoder'] = self.decoder
        need_dict[
            'num_heads_applied_guided_attn'] = self.num_heads_applied_guided_attn
        need_dict[
            'num_layers_applied_guided_attn'] = self.num_layers_applied_guided_attn
        need_dict['use_scaled_pos_enc'] = self.use_scaled_pos_enc

        return after_outs, before_outs, logits, ys, labels, olens, ilens, need_dict

    def _forward(
            self,
            xs: paddle.Tensor,
            ilens: paddle.Tensor,
            ys: paddle.Tensor,
            olens: paddle.Tensor,
            spembs: paddle.Tensor,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        # forward encoder
        x_masks = self._source_mask(ilens)
        hs, h_masks = self.encoder(xs, x_masks)

        # integrate with GST
        if self.use_gst:
            style_embs = self.gst(ys)
            hs = hs + style_embs.unsqueeze(1)

        # integrate speaker embedding
        if self.spk_embed_dim is not None:
            hs = self._integrate_with_spk_embed(hs, spembs)

        # thin out frames for reduction factor (B, Lmax, odim) ->  (B, Lmax//r, odim)
        if self.reduction_factor > 1:
            ys_in = ys[:, self.reduction_factor - 1::self.reduction_factor]
            olens_in = olens.new(
                [olen // self.reduction_factor for olen in olens])
        else:
            ys_in, olens_in = ys, olens

        # add first zero frame and remove last frame for auto-regressive
        ys_in = self._add_first_frame_and_remove_last_frame(ys_in)

        # forward decoder
        y_masks = self._target_mask(olens_in)
        zs, _ = self.decoder(ys_in, y_masks, hs, h_masks)
        # (B, Lmax//r, odim * r) -> (B, Lmax//r * r, odim)
        before_outs = self.feat_out(zs).reshape([zs.shape[0], -1, self.odim])
        # (B, Lmax//r, r) -> (B, Lmax//r * r)
        logits = self.prob_out(zs).reshape([zs.shape[0], -1])

        # postnet -> (B, Lmax//r * r, odim)
        if self.postnet is None:
            after_outs = before_outs
        else:
            after_outs = before_outs + self.postnet(
                before_outs.transpose([0, 2, 1])).transpose([0, 2, 1])

        return after_outs, before_outs, logits

    def inference(
            self,
            text: paddle.Tensor,
            speech: paddle.Tensor=None,
            spembs: paddle.Tensor=None,
            threshold: float=0.5,
            minlenratio: float=0.0,
            maxlenratio: float=10.0,
            use_teacher_forcing: bool=False,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        """Generate the sequence of features given the sequences of characters.

        Parameters
        ----------
        text : Tensor(int64)
            Input sequence of characters (T,).
        speech : Tensor, optional
            Feature sequence to extract style (N, idim).
        spembs : Tensor, optional
            Speaker embedding vector (spk_embed_dim,).
        threshold : float, optional
            Threshold in inference.
        minlenratio : float, optional
            Minimum length ratio in inference.
        maxlenratio : float, optional
            Maximum length ratio in inference.
        use_teacher_forcing : bool, optional
            Whether to use teacher forcing.

        Returns
        ----------
        Tensor
            Output sequence of features (L, odim).
        Tensor
            Output sequence of stop probabilities (L,).
        Tensor
            Encoder-decoder (source) attention weights (#layers, #heads, L, T).

        """
        # input of embedding must be int64
        y = speech
        spemb = spembs

        # add eos at the last of sequence
        text = numpy.pad(
            text.numpy(), (0, 1), 'constant', constant_values=self.eos)
        x = paddle.to_tensor(text, dtype='int64')

        # inference with teacher forcing
        if use_teacher_forcing:
            assert speech is not None, "speech must be provided with teacher forcing."

            # get teacher forcing outputs
            xs, ys = x.unsqueeze(0), y.unsqueeze(0)
            spembs = None if spemb is None else spemb.unsqueeze(0)
            ilens = paddle.to_tensor(
                [xs.shape[1]], dtype=paddle.int64, place=xs.place)
            olens = paddle.to_tensor(
                [ys.shape[1]], dtype=paddle.int64, place=ys.place)
            outs, *_ = self._forward(xs, ilens, ys, olens, spembs)

            # get attention weights
            att_ws = []
            for i in range(len(self.decoder.decoders)):
                att_ws += [self.decoder.decoders[i].src_attn.attn]
            # (B, L, H, T_out, T_in)
            att_ws = paddle.stack(att_ws, axis=1)

            return outs[0], None, att_ws[0]

        # forward encoder
        xs = x.unsqueeze(0)
        hs, _ = self.encoder(xs, None)

        # integrate GST
        if self.use_gst:
            style_embs = self.gst(y.unsqueeze(0))
            hs = hs + style_embs.unsqueeze(1)

        # integrate speaker embedding
        if self.spk_embed_dim is not None:
            spembs = spemb.unsqueeze(0)
            hs = self._integrate_with_spk_embed(hs, spembs)

        # set limits of length
        maxlen = int(hs.shape[1] * maxlenratio / self.reduction_factor)
        minlen = int(hs.shape[1] * minlenratio / self.reduction_factor)

        # initialize
        idx = 0
        ys = paddle.zeros([1, 1, self.odim])
        outs, probs = [], []

        # forward decoder step-by-step
        z_cache = None
        while True:
            # update index
            idx += 1

            # calculate output and stop prob at idx-th step
            y_masks = subsequent_mask(idx).unsqueeze(0)
            z, z_cache = self.decoder.forward_one_step(
                ys, y_masks, hs, cache=z_cache)  # (B, adim)
            outs += [
                self.feat_out(z).reshape([self.reduction_factor, self.odim])
            ]  # [(r, odim), ...]
            probs += [F.sigmoid(self.prob_out(z))[0]]  # [(r), ...]

            # update next inputs
            ys = paddle.concat(
                (ys, outs[-1][-1].reshape([1, 1, self.odim])),
                axis=1)  # (1, idx + 1, odim)

            # get attention weights
            att_ws_ = []
            for name, m in self.named_sublayers():
                if isinstance(m, MultiHeadedAttention) and "src" in name:
                    # [(#heads, 1, T),...]
                    att_ws_ += [m.attn[0, :, -1].unsqueeze(1)]
            if idx == 1:
                att_ws = att_ws_
            else:
                # [(#heads, l, T), ...]
                att_ws = [
                    paddle.concat([att_w, att_w_], axis=1)
                    for att_w, att_w_ in zip(att_ws, att_ws_)
                ]

            # check whether to finish generation
            if sum(paddle.cast(probs[-1] >= threshold,
                               'int64')) > 0 or idx >= maxlen:
                # check mininum length
                if idx < minlen:
                    continue
                # (L, odim) -> (1, L, odim) -> (1, odim, L)
                outs = (paddle.concat(outs, axis=0).unsqueeze(0).transpose(
                    [0, 2, 1]))
                if self.postnet is not None:
                    # (1, odim, L)
                    outs = outs + self.postnet(outs)
                # (L, odim)
                outs = outs.transpose([0, 2, 1]).squeeze(0)
                probs = paddle.concat(probs, axis=0)
                break

        # concatenate attention weights -> (#layers, #heads, L, T)
        att_ws = paddle.stack(att_ws, axis=0)

        return outs, probs, att_ws

    def _add_first_frame_and_remove_last_frame(
            self, ys: paddle.Tensor) -> paddle.Tensor:
        ys_in = paddle.concat(
            [paddle.zeros((ys.shape[0], 1, ys.shape[2])), ys[:, :-1]], axis=1)
        return ys_in

    def _source_mask(self, ilens: paddle.Tensor) -> paddle.Tensor:
        """Make masks for self-attention.

        Parameters
        ----------
        ilens : Tensor
            Batch of lengths (B,).

        Returns
        -------
        Tensor
            Mask tensor for self-attention.
            dtype=paddle.bool

        Examples
        -------
        >>> ilens = [5, 3]
        >>> self._source_mask(ilens)
        tensor([[[1, 1, 1, 1, 1],
                    [1, 1, 1, 0, 0]]]) bool

        """
        x_masks = make_non_pad_mask(ilens)
        return x_masks.unsqueeze(-2)

    def _target_mask(self, olens: paddle.Tensor) -> paddle.Tensor:
        """Make masks for masked self-attention.

        Parameters
        ----------
            olens : LongTensor
                Batch of lengths (B,).

        Returns
        ----------
        Tensor
            Mask tensor for masked self-attention.

        Examples
        ----------
        >>> olens = [5, 3]
        >>> self._target_mask(olens)
        tensor([[[1, 0, 0, 0, 0],
                    [1, 1, 0, 0, 0],
                    [1, 1, 1, 0, 0],
                    [1, 1, 1, 1, 0],
                    [1, 1, 1, 1, 1]],
                [[1, 0, 0, 0, 0],
                    [1, 1, 0, 0, 0],
                    [1, 1, 1, 0, 0],
                    [1, 1, 1, 0, 0],
                    [1, 1, 1, 0, 0]]], dtype=paddle.uint8)

        """
        y_masks = make_non_pad_mask(olens)
        s_masks = subsequent_mask(y_masks.shape[-1]).unsqueeze(0)
        return paddle.logical_and(y_masks.unsqueeze(-2), s_masks)

    def _integrate_with_spk_embed(self,
                                  hs: paddle.Tensor,
                                  spembs: paddle.Tensor) -> paddle.Tensor:
        """Integrate speaker embedding with hidden states.

        Parameters
        ----------
        hs : Tensor
            Batch of hidden state sequences (B, Tmax, adim).
        spembs : Tensor
            Batch of speaker embeddings (B, spk_embed_dim).

        Returns
        ----------
        Tensor
            Batch of integrated hidden state sequences (B, Tmax, adim).

        """
        if self.spk_embed_integration_type == "add":
            # apply projection and then add to hidden states
            spembs = self.projection(F.normalize(spembs))
            hs = hs + spembs.unsqueeze(1)
        elif self.spk_embed_integration_type == "concat":
            # concat hidden states with spk embeds and then apply projection
            spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.shape[1],
                                                             -1)
            hs = self.projection(paddle.concat([hs, spembs], axis=-1))
        else:
            raise NotImplementedError("support only add or concat.")

        return hs


class TransformerTTSInference(nn.Layer):
    def __init__(self, normalizer, model):
        super().__init__()
        self.normalizer = normalizer
        self.acoustic_model = model

    def forward(self, text, spk_id=None):
        normalized_mel = self.acoustic_model.inference(text)[0]
        logmel = self.normalizer.inverse(normalized_mel)
        return logmel


class TransformerTTSLoss(nn.Layer):
    """Loss function module for Tacotron2."""

    def __init__(self,
                 use_masking=True,
                 use_weighted_masking=False,
                 bce_pos_weight=5.0):
        """Initialize Tactoron2 loss module.

        Parameters
        ----------
        use_masking : bool
            Whether to apply masking for padded part in loss calculation.
        use_weighted_masking : bool
            Whether to apply weighted masking in loss calculation.
        bce_pos_weight : float
            Weight of positive sample of stop token.

        """
        super().__init__()
        assert (use_masking != use_weighted_masking) or not use_masking
        self.use_masking = use_masking
        self.use_weighted_masking = use_weighted_masking

        # define criterions
        reduction = "none" if self.use_weighted_masking else "mean"
        self.l1_criterion = nn.L1Loss(reduction=reduction)
        self.mse_criterion = nn.MSELoss(reduction=reduction)
        self.bce_criterion = nn.BCEWithLogitsLoss(
            reduction=reduction, pos_weight=paddle.to_tensor(bce_pos_weight))

    def forward(self, after_outs, before_outs, logits, ys, labels, olens):
        """Calculate forward propagation.

        Parameters
        ----------
        after_outs : Tensor
            Batch of outputs after postnets (B, Lmax, odim).
        before_outs : Tensor
            Batch of outputs before postnets (B, Lmax, odim).
        logits : Tensor
            Batch of stop logits (B, Lmax).
        ys : Tensor
            Batch of padded target features (B, Lmax, odim).
        labels : LongTensor
            Batch of the sequences of stop token labels (B, Lmax).
        olens : LongTensor
            Batch of the lengths of each target (B,).

        Returns
        ----------
        Tensor
            L1 loss value.
        Tensor
            Mean square error loss value.
        Tensor
            Binary cross entropy loss value.

        """
        # make mask and apply it
        if self.use_masking:
            masks = make_non_pad_mask(olens).unsqueeze(-1)
            ys = ys.masked_select(masks.broadcast_to(ys.shape))
            after_outs = after_outs.masked_select(
                masks.broadcast_to(after_outs.shape))
            before_outs = before_outs.masked_select(
                masks.broadcast_to(before_outs.shape))
            # Operator slice does not have kernel for data_type[bool]
            tmp_masks = paddle.cast(masks, dtype='int64')
            tmp_masks = tmp_masks[:, :, 0]
            tmp_masks = paddle.cast(tmp_masks, dtype='bool')
            labels = labels.masked_select(tmp_masks.broadcast_to(labels.shape))
            logits = logits.masked_select(tmp_masks.broadcast_to(logits.shape))

        # calculate loss
        l1_loss = self.l1_criterion(after_outs, ys) + self.l1_criterion(
            before_outs, ys)
        mse_loss = self.mse_criterion(after_outs, ys) + self.mse_criterion(
            before_outs, ys)
        bce_loss = self.bce_criterion(logits, labels)

        # make weighted mask and apply it
        if self.use_weighted_masking:
            masks = make_non_pad_mask(olens).unsqueeze(-1)
            weights = masks.float() / masks.sum(dim=1, keepdim=True).float()
            out_weights = weights.div(ys.shape[0] * ys.shape[2])
            logit_weights = weights.div(ys.shape[0])

            # apply weight
            l1_loss = l1_loss.multiply(out_weights)
            l1_loss = l1_loss.masked_select(
                masks.broadcast_to(l1_loss.shape)).sum()

            mse_loss = mse_loss.multiply(out_weights)
            mse_loss = mse_loss.masked_select(
                masks.broadcast_to(mse_loss.shape)).sum()

            bce_loss = bce_loss.multiply(logit_weights.squeeze(-1))
            bce_loss = bce_loss.masked_select(
                masks.squeeze(-1).broadcast_to(bce_loss.shape)).sum()

        return l1_loss, mse_loss, bce_loss


class GuidedAttentionLoss(nn.Layer):
    """Guided attention loss function module.

    This module calculates the guided attention loss described
    in `Efficiently Trainable Text-to-Speech System Based
    on Deep Convolutional Networks with Guided Attention`_,
    which forces the attention to be diagonal.

    .. _`Efficiently Trainable Text-to-Speech System
        Based on Deep Convolutional Networks with Guided Attention`:
        https://arxiv.org/abs/1710.08969

    """

    def __init__(self, sigma=0.4, alpha=1.0, reset_always=True):
        """Initialize guided attention loss module.

        Parameters
        ----------
        sigma : float, optional
            Standard deviation to control how close attention to a diagonal.
        alpha : float, optional
            Scaling coefficient (lambda).
        reset_always : bool, optional
            Whether to always reset masks.

        """
        super(GuidedAttentionLoss, self).__init__()
        self.sigma = sigma
        self.alpha = alpha
        self.reset_always = reset_always
        self.guided_attn_masks = None
        self.masks = None

    def _reset_masks(self):
        self.guided_attn_masks = None
        self.masks = None

    def forward(self, att_ws, ilens, olens):
        """Calculate forward propagation.

        Parameters
        ----------
        att_ws : Tensor
            Batch of attention weights (B, T_max_out, T_max_in).
        ilens : LongTensor
            Batch of input lenghts (B,).
        olens : LongTensor
            Batch of output lenghts (B,).

        Returns
        ----------
        Tensor
            Guided attention loss value.

        """
        if self.guided_attn_masks is None:
            self.guided_attn_masks = self._make_guided_attention_masks(ilens,
                                                                       olens)
        if self.masks is None:
            self.masks = self._make_masks(ilens, olens)
        losses = self.guided_attn_masks * att_ws
        loss = paddle.mean(
            losses.masked_select(self.masks.broadcast_to(losses.shape)))
        if self.reset_always:
            self._reset_masks()
        return self.alpha * loss

    def _make_guided_attention_masks(self, ilens, olens):
        n_batches = len(ilens)
        max_ilen = max(ilens)
        max_olen = max(olens)
        guided_attn_masks = paddle.zeros((n_batches, max_olen, max_ilen))

        for idx, (ilen, olen) in enumerate(zip(ilens, olens)):

            ilen = int(ilen)
            olen = int(olen)
            guided_attn_masks[idx, :olen, :
                              ilen] = self._make_guided_attention_mask(
                                  ilen, olen, self.sigma)
        return guided_attn_masks

    @staticmethod
    def _make_guided_attention_mask(ilen, olen, sigma):
        """Make guided attention mask.

        Examples
        ----------
        >>> guided_attn_mask =_make_guided_attention(5, 5, 0.4)
        >>> guided_attn_mask.shape
        [5, 5]
        >>> guided_attn_mask
        tensor([[0.0000, 0.1175, 0.3935, 0.6753, 0.8647],
                [0.1175, 0.0000, 0.1175, 0.3935, 0.6753],
                [0.3935, 0.1175, 0.0000, 0.1175, 0.3935],
                [0.6753, 0.3935, 0.1175, 0.0000, 0.1175],
                [0.8647, 0.6753, 0.3935, 0.1175, 0.0000]])
        >>> guided_attn_mask =_make_guided_attention(3, 6, 0.4)
        >>> guided_attn_mask.shape
        [6, 3]
        >>> guided_attn_mask
        tensor([[0.0000, 0.2934, 0.7506],
                [0.0831, 0.0831, 0.5422],
                [0.2934, 0.0000, 0.2934],
                [0.5422, 0.0831, 0.0831],
                [0.7506, 0.2934, 0.0000],
                [0.8858, 0.5422, 0.0831]])

        """
        grid_x, grid_y = paddle.meshgrid(
            paddle.arange(olen), paddle.arange(ilen))
        grid_x = grid_x.cast(dtype=paddle.float32)
        grid_y = grid_y.cast(dtype=paddle.float32)
        return 1.0 - paddle.exp(-(
            (grid_y / ilen - grid_x / olen)**2) / (2 * (sigma**2)))

    @staticmethod
    def _make_masks(ilens, olens):
        """Make masks indicating non-padded part.

        Parameters
        ----------
        ilens (LongTensor or List): Batch of lengths (B,).
        olens (LongTensor or List): Batch of lengths (B,).

        Returns
        ----------
        Tensor 
            Mask tensor indicating non-padded part.

        Examples
        ----------
        >>> ilens, olens = [5, 2], [8, 5]
        >>> _make_mask(ilens, olens)
        tensor([[[1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 1, 1]],

                [[1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0]]], dtype=paddle.uint8)

        """
        # (B, T_in)
        in_masks = make_non_pad_mask(ilens)
        # (B, T_out)
        out_masks = make_non_pad_mask(olens)
        # (B, T_out, T_in)

        return paddle.logical_and(
            out_masks.unsqueeze(-1), in_masks.unsqueeze(-2))


class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss):
    """Guided attention loss function module for multi head attention.

    Parameters
    ----------
    sigma : float, optional
        Standard deviation to controlGuidedAttentionLoss
        how close attention to a diagonal.
    alpha : float, optional
        Scaling coefficient (lambda).
    reset_always : bool, optional
        Whether to always reset masks.

    """

    def forward(self, att_ws, ilens, olens):
        """Calculate forward propagation.

        Parameters
        ----------
        att_ws : Tensor
            Batch of multi head attention weights (B, H, T_max_out, T_max_in).
        ilens : Tensor
            Batch of input lenghts (B,).
        olens : Tensor
            Batch of output lenghts (B,).

        Returns
        ----------
        Tensor
            Guided attention loss value.

        """
        if self.guided_attn_masks is None:
            self.guided_attn_masks = (
                self._make_guided_attention_masks(ilens, olens).unsqueeze(1))
        if self.masks is None:
            self.masks = self._make_masks(ilens, olens).unsqueeze(1)
        losses = self.guided_attn_masks * att_ws
        loss = paddle.mean(
            losses.masked_select(self.masks.broadcast_to(losses.shape)))
        if self.reset_always:
            self._reset_masks()

        return self.alpha * loss