encoder_layer.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
Hui Zhang 已提交
14
# Modified from wenet(https://github.com/wenet-e2e/wenet)
15 16 17 18 19 20 21
"""Encoder self-attention layer definition."""
from typing import Optional
from typing import Tuple

import paddle
from paddle import nn

22
from paddlespeech.s2t.utils.log import Log
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

logger = Log(__name__).getlog()

__all__ = ["TransformerEncoderLayer", "ConformerEncoderLayer"]


class TransformerEncoderLayer(nn.Layer):
    """Encoder layer module."""

    def __init__(
            self,
            size: int,
            self_attn: nn.Layer,
            feed_forward: nn.Layer,
            dropout_rate: float,
            normalize_before: bool=True,
            concat_after: bool=False, ):
        """Construct an EncoderLayer object.
        
        Args:
            size (int): Input dimension.
            self_attn (nn.Layer): Self-attention module instance.
                `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
                instance can be used as the argument.
            feed_forward (nn.Layer): Feed-forward module instance.
                `PositionwiseFeedForward`, instance can be used as the argument.
            dropout_rate (float): Dropout rate.
            normalize_before (bool):
                True: use layer_norm before each sub-block.
                False: to use layer_norm after each sub-block.
            concat_after (bool): Whether to concat attention layer's input and
                output.
                True: x -> x + linear(concat(x, att(x)))
                False: x -> x + att(x)
        """
        super().__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = nn.LayerNorm(size, epsilon=1e-12)
        self.norm2 = nn.LayerNorm(size, epsilon=1e-12)
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        # concat_linear may be not used in forward fuction,
        # but will be saved in the *.pt
        self.concat_linear = nn.Linear(size + size, size)

    def forward(
            self,
            x: paddle.Tensor,
            mask: paddle.Tensor,
75
            pos_emb: Optional[paddle.Tensor]=None,
76 77 78 79 80 81 82 83 84 85
            mask_pad: Optional[paddle.Tensor]=None,
            output_cache: Optional[paddle.Tensor]=None,
            cnn_cache: Optional[paddle.Tensor]=None,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        """Compute encoded features.
        Args:
            x (paddle.Tensor): Input tensor (#batch, time, size).
            mask (paddle.Tensor): Mask tensor for the input (#batch, time).
            pos_emb (paddle.Tensor): just for interface compatibility
                to ConformerEncoderLayer
86 87
            mask_pad (paddle.Tensor): not used here, it's for interface
                compatibility to ConformerEncoderLayer
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            output_cache (paddle.Tensor): Cache tensor of the output
                (#batch, time2, size), time2 < time in x.
            cnn_cache (paddle.Tensor): not used here, it's for interface
                compatibility to ConformerEncoderLayer
        Returns:
            paddle.Tensor: Output tensor (#batch, time, size).
            paddle.Tensor: Mask tensor (#batch, time).
            paddle.Tensor: Fake cnn cache tensor for api compatibility with Conformer (#batch, channels, time').
        """
        residual = x
        if self.normalize_before:
            x = self.norm1(x)

        if output_cache is None:
            x_q = x
        else:
            assert output_cache.shape[0] == x.shape[0]
            assert output_cache.shape[1] < x.shape[1]
            assert output_cache.shape[2] == self.size
            chunk = x.shape[1] - output_cache.shape[1]
            x_q = x[:, -chunk:, :]
            residual = residual[:, -chunk:, :]
            mask = mask[:, -chunk:, :]

        if self.concat_after:
            x_concat = paddle.concat(
                (x, self.self_attn(x_q, x, x, mask)), axis=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(self.self_attn(x_q, x, x, mask))
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        if output_cache is not None:
            x = paddle.concat([output_cache, x], axis=1)

        fake_cnn_cache = paddle.zeros([1], dtype=x.dtype)
        return x, mask, fake_cnn_cache


class ConformerEncoderLayer(nn.Layer):
    """Encoder layer module."""

    def __init__(
            self,
            size: int,
            self_attn: nn.Layer,
            feed_forward: Optional[nn.Layer]=None,
            feed_forward_macaron: Optional[nn.Layer]=None,
            conv_module: Optional[nn.Layer]=None,
            dropout_rate: float=0.1,
            normalize_before: bool=True,
            concat_after: bool=False, ):
        """Construct an EncoderLayer object.
        
        Args:
            size (int): Input dimension.
            self_attn (nn.Layer): Self-attention module instance.
                `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
                instance can be used as the argument.
            feed_forward (nn.Layer): Feed-forward module instance.
                `PositionwiseFeedForward` instance can be used as the argument.
            feed_forward_macaron (nn.Layer): Additional feed-forward module
                instance.
                `PositionwiseFeedForward` instance can be used as the argument.
            conv_module (nn.Layer): Convolution module instance.
                `ConvlutionModule` instance can be used as the argument.
            dropout_rate (float): Dropout rate.
            normalize_before (bool):
                True: use layer_norm before each sub-block.
                False: use layer_norm after each sub-block.
            concat_after (bool): Whether to concat attention layer's input and
                output.
                True: x -> x + linear(concat(x, att(x)))
                False: x -> x + att(x)
        """
        super().__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.conv_module = conv_module
        self.norm_ff = nn.LayerNorm(size, epsilon=1e-12)  # for the FNN module
        self.norm_mha = nn.LayerNorm(size, epsilon=1e-12)  # for the MHA module
        if feed_forward_macaron is not None:
            self.norm_ff_macaron = nn.LayerNorm(size, epsilon=1e-12)
            self.ff_scale = 0.5
        else:
            self.ff_scale = 1.0
        if self.conv_module is not None:
            self.norm_conv = nn.LayerNorm(
                size, epsilon=1e-12)  # for the CNN module
            self.norm_final = nn.LayerNorm(
                size, epsilon=1e-12)  # for the final output of the block
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        self.concat_linear = nn.Linear(size + size, size)

    def forward(
            self,
            x: paddle.Tensor,
            mask: paddle.Tensor,
            pos_emb: paddle.Tensor,
            mask_pad: Optional[paddle.Tensor]=None,
            output_cache: Optional[paddle.Tensor]=None,
            cnn_cache: Optional[paddle.Tensor]=None,
    ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
        """Compute encoded features.
        Args:
            x (paddle.Tensor): (#batch, time, size)
            mask (paddle.Tensor): Mask tensor for the input (#batch, time,time).
            pos_emb (paddle.Tensor): positional encoding, must not be None
                for ConformerEncoderLayer.
            mask_pad (paddle.Tensor): batch padding mask used for conv module, (B, 1, T).
            output_cache (paddle.Tensor): Cache tensor of the encoder output
                (#batch, time2, size), time2 < time in x.
            cnn_cache (paddle.Tensor): Convolution cache in conformer layer
        Returns:
            paddle.Tensor: Output tensor (#batch, time, size).
            paddle.Tensor: Mask tensor (#batch, time).
            paddle.Tensor: New cnn cache tensor (#batch, channels, time').
        """
        # whether to use macaron style FFN
        if self.feed_forward_macaron is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_ff_macaron(x)
            x = residual + self.ff_scale * self.dropout(
                self.feed_forward_macaron(x))
            if not self.normalize_before:
                x = self.norm_ff_macaron(x)

        # multi-headed self-attention module
        residual = x
        if self.normalize_before:
            x = self.norm_mha(x)

        if output_cache is None:
            x_q = x
        else:
            assert output_cache.shape[0] == x.shape[0]
            assert output_cache.shape[1] < x.shape[1]
            assert output_cache.shape[2] == self.size
            chunk = x.shape[1] - output_cache.shape[1]
            x_q = x[:, -chunk:, :]
            residual = residual[:, -chunk:, :]
            mask = mask[:, -chunk:, :]

        x_att = self.self_attn(x_q, x, x, pos_emb, mask)

        if self.concat_after:
            x_concat = paddle.concat((x, x_att), axis=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(x_att)

        if not self.normalize_before:
            x = self.norm_mha(x)

        # convolution module
        # Fake new cnn cache here, and then change it in conv_module
        new_cnn_cache = paddle.zeros([1], dtype=x.dtype)
        if self.conv_module is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_conv(x)

            x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
            x = residual + self.dropout(x)

            if not self.normalize_before:
                x = self.norm_conv(x)

        # feed forward module
        residual = x
        if self.normalize_before:
            x = self.norm_ff(x)

        x = residual + self.ff_scale * self.dropout(self.feed_forward(x))

        if not self.normalize_before:
            x = self.norm_ff(x)

        if self.conv_module is not None:
            x = self.norm_final(x)

        if output_cache is not None:
            x = paddle.concat([output_cache, x], axis=1)

        return x, mask, new_cnn_cache