beam_search.py 20.7 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
Hui Zhang 已提交
14
# Modified from espnet(https://github.com/espnet/espnet)
H
Hui Zhang 已提交
15 16 17 18 19 20 21 22 23 24 25
"""Beam search module."""
from itertools import chain
from typing import Any
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Tuple
from typing import Union

import paddle

H
Hui Zhang 已提交
26 27 28
from ..scorers.scorer_interface import PartialScorerInterface
from ..scorers.scorer_interface import ScorerInterface
from ..utils import end_detect
29
from paddlespeech.s2t.utils.log import Log
H
Hui Zhang 已提交
30 31 32

logger = Log(__name__).getlog()

H
Hui Zhang 已提交
33

H
Hui Zhang 已提交
34 35 36
class Hypothesis(NamedTuple):
    """Hypothesis data type."""

H
Hui Zhang 已提交
37
    yseq: paddle.Tensor  # (T,)
H
Hui Zhang 已提交
38 39 40 41 42 43 44 45 46
    score: Union[float, paddle.Tensor] = 0
    scores: Dict[str, Union[float, paddle.Tensor]] = dict()
    states: Dict[str, Any] = dict()

    def asdict(self) -> dict:
        """Convert data to JSON-friendly dict."""
        return self._replace(
            yseq=self.yseq.tolist(),
            score=float(self.score),
H
Hui Zhang 已提交
47 48
            scores={k: float(v)
                    for k, v in self.scores.items()}, )._asdict()
H
Hui Zhang 已提交
49 50 51 52 53 54


class BeamSearch(paddle.nn.Layer):
    """Beam search implementation."""

    def __init__(
H
Hui Zhang 已提交
55 56 57 58 59 60 61 62 63 64
            self,
            scorers: Dict[str, ScorerInterface],
            weights: Dict[str, float],
            beam_size: int,
            vocab_size: int,
            sos: int,
            eos: int,
            token_list: List[str]=None,
            pre_beam_ratio: float=1.5,
            pre_beam_score_key: str=None, ):
H
Hui Zhang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        """Initialize beam search.

        Args:
            scorers (dict[str, ScorerInterface]): Dict of decoder modules
                e.g., Decoder, CTCPrefixScorer, LM
                The scorer will be ignored if it is `None`
            weights (dict[str, float]): Dict of weights for each scorers
                The scorer will be ignored if its weight is 0
            beam_size (int): The number of hypotheses kept during search
            vocab_size (int): The number of vocabulary
            sos (int): Start of sequence id
            eos (int): End of sequence id
            token_list (list[str]): List of tokens for debug log
            pre_beam_score_key (str): key of scores to perform pre-beam search
            pre_beam_ratio (float): beam size in the pre-beam search
                will be `int(pre_beam_ratio * beam_size)`

        """
        super().__init__()
        # set scorers
        self.weights = weights
H
Hui Zhang 已提交
86 87 88
        self.scorers = dict()  # all = full + partial
        self.full_scorers = dict()  # full tokens
        self.part_scorers = dict()  # partial tokens
H
Hui Zhang 已提交
89 90
        # this module dict is required for recursive cast
        # `self.to(device, dtype)` in `recog.py`
H
Hui Zhang 已提交
91
        self.nn_dict = paddle.nn.LayerDict()  # nn.Layer
H
Hui Zhang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        for k, v in scorers.items():
            w = weights.get(k, 0)
            if w == 0 or v is None:
                continue
            assert isinstance(
                v, ScorerInterface
            ), f"{k} ({type(v)}) does not implement ScorerInterface"
            self.scorers[k] = v
            if isinstance(v, PartialScorerInterface):
                self.part_scorers[k] = v
            else:
                self.full_scorers[k] = v
            if isinstance(v, paddle.nn.Layer):
                self.nn_dict[k] = v

        # set configurations
        self.sos = sos
        self.eos = eos
        self.token_list = token_list
        # pre_beam_size > beam_size
        self.pre_beam_size = int(pre_beam_ratio * beam_size)
        self.beam_size = beam_size
        self.n_vocab = vocab_size
H
Hui Zhang 已提交
115 116 117 118
        if (pre_beam_score_key is not None and pre_beam_score_key != "full" and
                pre_beam_score_key not in self.full_scorers):
            raise KeyError(
                f"{pre_beam_score_key} is not found in {self.full_scorers}")
H
Hui Zhang 已提交
119 120 121
        # selected `key` scorer to do pre beam search
        self.pre_beam_score_key = pre_beam_score_key
        # do_pre_beam when need, valid and has part_scorers
H
Hui Zhang 已提交
122 123 124
        self.do_pre_beam = (self.pre_beam_score_key is not None and
                            self.pre_beam_size < self.n_vocab and
                            len(self.part_scorers) > 0)
H
Hui Zhang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    def init_hyp(self, x: paddle.Tensor) -> List[Hypothesis]:
        """Get an initial hypothesis data.

        Args:
            x (paddle.Tensor): The encoder output feature, (T, D)

        Returns:
            Hypothesis: The initial hypothesis.

        """
        init_states = dict()
        init_scores = dict()
        for k, d in self.scorers.items():
            init_states[k] = d.init_state(x)
            init_scores[k] = 0.0
        return [
            Hypothesis(
                yseq=paddle.to_tensor([self.sos], place=x.place),
                score=0.0,
                scores=init_scores,
H
Hui Zhang 已提交
146
                states=init_states, )
H
Hui Zhang 已提交
147 148 149
        ]

    @staticmethod
H
Hui Zhang 已提交
150 151
    def append_token(xs: paddle.Tensor,
                     x: Union[int, paddle.Tensor]) -> paddle.Tensor:
H
Hui Zhang 已提交
152 153 154 155 156 157 158 159 160 161
        """Append new token to prefix tokens.

        Args:
            xs (paddle.Tensor): The prefix token, (T,)
            x (int): The new token to append

        Returns:
            paddle.Tensor: (T+1,), New tensor contains: xs + [x] with xs.dtype and xs.device

        """
H
Hui Zhang 已提交
162 163
        x = paddle.to_tensor([x], dtype=xs.dtype) if isinstance(x, int) else x
        return paddle.concat((xs, x))
H
Hui Zhang 已提交
164

H
Hui Zhang 已提交
165 166
    def score_full(self, hyp: Hypothesis, x: paddle.Tensor
                   ) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
H
Hui Zhang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        """Score new hypothesis by `self.full_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            x (paddle.Tensor): Corresponding input feature, (T, D)

        Returns:
            Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.full_scorers`
                and tensor score values of shape: `(self.n_vocab,)`,
                and state dict that has string keys
                and state values of `self.full_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.full_scorers.items():
            # scores[k] shape (self.n_vocab,)
            scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x)
        return scores, states

H
Hui Zhang 已提交
188 189 190 191 192
    def score_partial(self,
                      hyp: Hypothesis,
                      ids: paddle.Tensor,
                      x: paddle.Tensor
                      ) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
H
Hui Zhang 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        """Score new hypothesis by `self.part_scorers`.

        Args:
            hyp (Hypothesis): Hypothesis with prefix tokens to score
            ids (paddle.Tensor): 1D tensor of new partial tokens to score, 
                len(ids) < n_vocab
            x (paddle.Tensor): Corresponding input feature, (T, D)

        Returns:
            Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
                score dict of `hyp` that has string keys of `self.part_scorers`
                and tensor score values of shape: `(len(ids),)`,
                and state dict that has string keys
                and state values of `self.part_scorers`

        """
        scores = dict()
        states = dict()
        for k, d in self.part_scorers.items():
            # scores[k] shape (len(ids),)
H
Hui Zhang 已提交
213 214
            scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k],
                                                   x)
H
Hui Zhang 已提交
215 216
        return scores, states

H
Hui Zhang 已提交
217 218
    def beam(self, weighted_scores: paddle.Tensor,
             ids: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]:
H
Hui Zhang 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        """Compute topk full token ids and partial token ids.

        Args:
            weighted_scores (paddle.Tensor): The weighted sum scores for each tokens.
                Its shape is `(self.n_vocab,)`.
            ids (paddle.Tensor): The partial token ids(Global) to compute topk.

        Returns:
            Tuple[paddle.Tensor, paddle.Tensor]: 
                The topk full token ids and partial token ids.
                Their shapes are `(self.beam_size,)`.
                i.e. (global ids, global relative local ids).

        """
        # no pre beam performed, `ids` equal to `weighted_scores`
        if weighted_scores.size(0) == ids.size(0):
H
Hui Zhang 已提交
235 236
            top_ids = weighted_scores.topk(
                self.beam_size)[1]  # index in n_vocab
H
Hui Zhang 已提交
237 238 239 240 241 242 243
            return top_ids, top_ids

        # mask pruned in pre-beam not to select in topk
        tmp = weighted_scores[ids]
        weighted_scores[:] = -float("inf")
        weighted_scores[ids] = tmp
        # top_ids no equal to local_ids, since ids shape not same
H
Hui Zhang 已提交
244 245 246
        top_ids = weighted_scores.topk(self.beam_size)[1]  # index in n_vocab
        local_ids = weighted_scores[ids].topk(
            self.beam_size)[1]  # index in len(ids)
H
Hui Zhang 已提交
247 248 249 250
        return top_ids, local_ids

    @staticmethod
    def merge_scores(
H
Hui Zhang 已提交
251 252 253 254 255
            prev_scores: Dict[str, float],
            next_full_scores: Dict[str, paddle.Tensor],
            full_idx: int,
            next_part_scores: Dict[str, paddle.Tensor],
            part_idx: int, ) -> Dict[str, paddle.Tensor]:
H
Hui Zhang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        """Merge scores for new hypothesis.

        Args:
            prev_scores (Dict[str, float]):
                The previous hypothesis scores by `self.scorers`
            next_full_scores (Dict[str, paddle.Tensor]): scores by `self.full_scorers`
            full_idx (int): The next token id for `next_full_scores`
            next_part_scores (Dict[str, paddle.Tensor]):
                scores of partial tokens by `self.part_scorers`
            part_idx (int): The new token id for `next_part_scores`

        Returns:
            Dict[str, paddle.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are scalar tensors by the scorers.

        """
        new_scores = dict()
        for k, v in next_full_scores.items():
            new_scores[k] = prev_scores[k] + v[full_idx]
        for k, v in next_part_scores.items():
            new_scores[k] = prev_scores[k] + v[part_idx]
        return new_scores

    def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
        """Merge states for new hypothesis.

        Args:
            states: states of `self.full_scorers`
            part_states: states of `self.part_scorers`
            part_idx (int): The new token id for `part_scores`

        Returns:
            Dict[str, paddle.Tensor]: The new score dict.
                Its keys are names of `self.full_scorers` and `self.part_scorers`.
                Its values are states of the scorers.

        """
        new_states = dict()
        for k, v in states.items():
            new_states[k] = v
        for k, d in self.part_scorers.items():
            new_states[k] = d.select_state(part_states[k], part_idx)
        return new_states

H
Hui Zhang 已提交
301 302
    def search(self, running_hyps: List[Hypothesis],
               x: paddle.Tensor) -> List[Hypothesis]:
H
Hui Zhang 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316
        """Search new tokens for running hypotheses and encoded speech x.

        Args:
            running_hyps (List[Hypothesis]): Running hypotheses on beam
            x (paddle.Tensor): Encoded speech feature (T, D)

        Returns:
            List[Hypotheses]: Best sorted hypotheses

        """
        best_hyps = []
        part_ids = paddle.arange(self.n_vocab)  # no pre-beam
        for hyp in running_hyps:
            # scoring
H
Hui Zhang 已提交
317
            weighted_scores = paddle.zeros([self.n_vocab], dtype=x.dtype)
H
Hui Zhang 已提交
318 319 320 321 322
            scores, states = self.score_full(hyp, x)
            for k in self.full_scorers:
                weighted_scores += self.weights[k] * scores[k]
            # partial scoring
            if self.do_pre_beam:
H
Hui Zhang 已提交
323 324 325
                pre_beam_scores = (weighted_scores
                                   if self.pre_beam_score_key == "full" else
                                   scores[self.pre_beam_score_key])
H
Hui Zhang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
                part_ids = paddle.topk(pre_beam_scores, self.pre_beam_size)[1]
            part_scores, part_states = self.score_partial(hyp, part_ids, x)
            for k in self.part_scorers:
                weighted_scores[part_ids] += self.weights[k] * part_scores[k]
            # add previous hyp score
            weighted_scores += hyp.score

            # update hyps
            for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
                # `part_j` is `j` relative id in `part_scores`
                # will be (2 x beam at most)
                best_hyps.append(
                    Hypothesis(
                        score=weighted_scores[j],
                        yseq=self.append_token(hyp.yseq, j),
H
Hui Zhang 已提交
341 342
                        scores=self.merge_scores(hyp.scores, scores, j,
                                                 part_scores, part_j),
H
Hui Zhang 已提交
343
                        states=self.merge_states(states, part_states, part_j),
H
Hui Zhang 已提交
344
                    ))
H
Hui Zhang 已提交
345 346

            # sort and prune 2 x beam -> beam
H
Hui Zhang 已提交
347 348 349
            best_hyps = sorted(
                best_hyps, key=lambda x: x.score,
                reverse=True)[:min(len(best_hyps), self.beam_size)]
H
Hui Zhang 已提交
350 351
        return best_hyps

H
Hui Zhang 已提交
352 353 354 355
    def forward(self,
                x: paddle.Tensor,
                maxlenratio: float=0.0,
                minlenratio: float=0.0) -> List[Hypothesis]:
H
Hui Zhang 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        """Perform beam search.

        Args:
            x (paddle.Tensor): Encoded speech feature (T, D)
            maxlenratio (float): Input length ratio to obtain max output length.
                If maxlenratio=0.0 (default), it uses a end-detect function
                    to automatically find maximum hypothesis lengths
                If maxlenratio<0.0, its absolute value is interpreted
                    as a constant max output length.
            minlenratio (float): Input length ratio to obtain min output length.

        Returns:
            list[Hypothesis]: N-best decoding results

        """
        # set length bounds
        if maxlenratio == 0:
            maxlen = x.shape[0]
        elif maxlenratio < 0:
            maxlen = -1 * int(maxlenratio)
        else:
            maxlen = max(1, int(maxlenratio * x.size(0)))
        minlen = int(minlenratio * x.size(0))
        logger.info("decoder input length: " + str(x.shape[0]))
        logger.info("max output length: " + str(maxlen))
        logger.info("min output length: " + str(minlen))

        # main loop of prefix search
        running_hyps = self.init_hyp(x)
        ended_hyps = []
        for i in range(maxlen):
            logger.debug("position " + str(i))
            best = self.search(running_hyps, x)
            # post process of one iteration
H
Hui Zhang 已提交
390 391
            running_hyps = self.post_process(i, maxlen, maxlenratio, best,
                                             ended_hyps)
H
Hui Zhang 已提交
392
            # end detection
H
Hui Zhang 已提交
393 394
            if maxlenratio == 0.0 and end_detect(
                [h.asdict() for h in ended_hyps], i):
H
Hui Zhang 已提交
395 396 397 398 399 400 401 402 403 404 405
                logger.info(f"end detected at {i}")
                break
            if len(running_hyps) == 0:
                logger.info("no hypothesis. Finish decoding.")
                break
            else:
                logger.debug(f"remained hypotheses: {len(running_hyps)}")

        nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
        # check the number of hypotheses reaching to eos
        if len(nbest_hyps) == 0:
H
Hui Zhang 已提交
406 407 408 409
            logger.warning("there is no N-best results, perform recognition "
                           "again with smaller minlenratio.")
            return ([] if minlenratio < 0.1 else
                    self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1)))
H
Hui Zhang 已提交
410 411 412 413 414

        # report the best result
        best = nbest_hyps[0]
        for k, v in best.scores.items():
            logger.info(
H
Hui Zhang 已提交
415
                f"{float(v):6.2f} * {self.weights[k]:3} = {float(v) * self.weights[k]:6.2f} for {k}"
H
Hui Zhang 已提交
416
            )
H
Hui Zhang 已提交
417
        logger.info(f"total log probability: {float(best.score):.2f}")
H
Hui Zhang 已提交
418 419 420
        logger.info(
            f"normalized log probability: {float(best.score) / len(best.yseq):.2f}"
        )
H
Hui Zhang 已提交
421 422
        logger.info(f"total number of ended hypotheses: {len(nbest_hyps)}")
        if self.token_list is not None:
H
Hui Zhang 已提交
423 424 425 426 427
            # logger.info(
            #     "best hypo: "
            #     + "".join([self.token_list[x] for x in best.yseq[1:-1]])
            #     + "\n"
            # )
H
Hui Zhang 已提交
428 429
            logger.info("best hypo: " + "".join(
                [self.token_list[x] for x in best.yseq[1:]]) + "\n")
H
Hui Zhang 已提交
430 431 432
        return nbest_hyps

    def post_process(
H
Hui Zhang 已提交
433 434 435 436 437 438
            self,
            i: int,
            maxlen: int,
            maxlenratio: float,
            running_hyps: List[Hypothesis],
            ended_hyps: List[Hypothesis], ) -> List[Hypothesis]:
H
Hui Zhang 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        """Perform post-processing of beam search iterations.

        Args:
            i (int): The length of hypothesis tokens.
            maxlen (int): The maximum length of tokens in beam search.
            maxlenratio (int): The maximum length ratio in beam search.
            running_hyps (List[Hypothesis]): The running hypotheses in beam search.
            ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.

        Returns:
            List[Hypothesis]: The new running hypotheses.

        """
        logger.debug(f"the number of running hypotheses: {len(running_hyps)}")
        if self.token_list is not None:
H
Hui Zhang 已提交
454 455
            logger.debug("best hypo: " + "".join(
                [self.token_list[x] for x in running_hyps[0].yseq[1:]]))
H
Hui Zhang 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469
        # add eos in the final loop to avoid that there are no ended hyps
        if i == maxlen - 1:
            logger.info("adding <eos> in the last position in the loop")
            running_hyps = [
                h._replace(yseq=self.append_token(h.yseq, self.eos))
                for h in running_hyps
            ]

        # add ended hypotheses to a final list, and removed them from current hypotheses
        # (this will be a problem, number of hyps < beam)
        remained_hyps = []
        for hyp in running_hyps:
            if hyp.yseq[-1] == self.eos:
                # e.g., Word LM needs to add final <eos> score
H
Hui Zhang 已提交
470 471
                for k, d in chain(self.full_scorers.items(),
                                  self.part_scorers.items()):
H
Hui Zhang 已提交
472 473 474 475 476 477 478 479 480 481
                    s = d.final_score(hyp.states[k])
                    hyp.scores[k] += s
                    hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
                ended_hyps.append(hyp)
            else:
                remained_hyps.append(hyp)
        return remained_hyps


def beam_search(
H
Hui Zhang 已提交
482 483 484 485 486 487 488 489 490 491 492 493
        x: paddle.Tensor,
        sos: int,
        eos: int,
        beam_size: int,
        vocab_size: int,
        scorers: Dict[str, ScorerInterface],
        weights: Dict[str, float],
        token_list: List[str]=None,
        maxlenratio: float=0.0,
        minlenratio: float=0.0,
        pre_beam_ratio: float=1.5,
        pre_beam_score_key: str="full", ) -> list:
H
Hui Zhang 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    """Perform beam search with scorers.

    Args:
        x (paddle.Tensor): Encoded speech feature (T, D)
        sos (int): Start of sequence id
        eos (int): End of sequence id
        beam_size (int): The number of hypotheses kept during search
        vocab_size (int): The number of vocabulary
        scorers (dict[str, ScorerInterface]): Dict of decoder modules
            e.g., Decoder, CTCPrefixScorer, LM
            The scorer will be ignored if it is `None`
        weights (dict[str, float]): Dict of weights for each scorers
            The scorer will be ignored if its weight is 0
        token_list (list[str]): List of tokens for debug log
        maxlenratio (float): Input length ratio to obtain max output length.
            If maxlenratio=0.0 (default), it uses a end-detect function
            to automatically find maximum hypothesis lengths
        minlenratio (float): Input length ratio to obtain min output length.
        pre_beam_score_key (str): key of scores to perform pre-beam search
        pre_beam_ratio (float): beam size in the pre-beam search
            will be `int(pre_beam_ratio * beam_size)`

    Returns:
        List[Dict]: N-best decoding results

    """
    ret = BeamSearch(
        scorers,
        weights,
        beam_size=beam_size,
        vocab_size=vocab_size,
        pre_beam_ratio=pre_beam_ratio,
        pre_beam_score_key=pre_beam_score_key,
        sos=sos,
        eos=eos,
H
Hui Zhang 已提交
529 530
        token_list=token_list, ).forward(
            x=x, maxlenratio=maxlenratio, minlenratio=minlenratio)
H
Hui Zhang 已提交
531
    return [h.asdict() for h in ret]