tune.py 7.5 KB
Newer Older
1
"""
2
   Parameters tuning for beam search decoder in Deep Speech 2.
3 4 5 6 7 8 9 10 11 12 13 14
"""

import paddle.v2 as paddle
import distutils.util
import argparse
import gzip
from audio_data_utils import DataGenerator
from model import deep_speech2
from decoder import *
from error_rate import wer

parser = argparse.ArgumentParser(
15
    description='Parameters tuning for ctc beam search decoder in  Deep Speech 2.'
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
)
parser.add_argument(
    "--num_samples",
    default=100,
    type=int,
    help="Number of samples for parameters tuning. (default: %(default)s)")
parser.add_argument(
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
parser.add_argument(
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--normalizer_manifest_path",
    default='data/manifest.libri.train-clean-100',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--decode_manifest_path",
    default='data/manifest.libri.test-100sample',
    type=str,
    help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
    default='./params.tar.gz',
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--vocab_filepath",
    default='data/eng_vocab.txt',
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
    "--decode_method",
    default='beam_search_nproc',
    type=str,
    help="Method for decoding, beam_search or beam_search_nproc. (default: %(default)s)"
)
parser.add_argument(
    "--beam_size",
    default=500,
    type=int,
    help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
    "--num_results_per_sample",
    default=1,
    type=int,
    help="Number of outputs per sample in beam search. (default: %(default)d)")
parser.add_argument(
    "--language_model_path",
    default="./data/1Billion.klm",
    type=str,
    help="Path for language model. (default: %(default)s)")
parser.add_argument(
    "--alpha_from",
85
    default=0.1,
86
    type=float,
87
    help="Where alpha starts from. (default: %(default)f)")
88
parser.add_argument(
89 90 91 92
    "--num_alphas",
    default=14,
    type=int,
    help="Number of candidate alphas. (default: %(default)d)")
93 94
parser.add_argument(
    "--alpha_to",
95
    default=0.36,
96
    type=float,
97
    help="Where alpha ends with. (default: %(default)f)")
98 99
parser.add_argument(
    "--beta_from",
100
    default=0.05,
101
    type=float,
102
    help="Where beta starts from. (default: %(default)f)")
103
parser.add_argument(
104 105
    "--num_betas",
    default=20,
106
    type=float,
107
    help="Number of candidate betas. (default: %(default)d)")
108 109
parser.add_argument(
    "--beta_to",
110
    default=1.0,
111
    type=float,
112 113 114 115 116 117 118
    help="Where beta ends with. (default: %(default)f)")
parser.add_argument(
    "--cutoff_prob",
    default=0.99,
    type=float,
    help="The cutoff probability of pruning"
    "in beam search. (default: %(default)f)")
119 120 121 122 123 124 125 126
args = parser.parse_args()


def tune():
    """
    Tune parameters alpha and beta on one minibatch.
    """

127 128
    if not args.num_alphas >= 0:
        raise ValueError("num_alphas must be non-negative!")
129

130 131
    if not args.num_betas >= 0:
        raise ValueError("num_betas must be non-negative!")
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    # initialize data generator
    data_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        normalizer_manifest_path=args.normalizer_manifest_path,
        normalizer_num_samples=200,
        max_duration=20.0,
        min_duration=0.0,
        stride_ms=10,
        window_ms=20)

    # create network config
    dict_size = data_generator.vocabulary_size()
    vocab_list = data_generator.vocabulary_list()
    audio_data = paddle.layer.data(
        name="audio_spectrogram",
        height=161,
        width=2000,
        type=paddle.data_type.dense_vector(322000))
    text_data = paddle.layer.data(
        name="transcript_text",
        type=paddle.data_type.integer_value_sequence(dict_size))
    output_probs = deep_speech2(
        audio_data=audio_data,
        text_data=text_data,
        dict_size=dict_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_size=args.rnn_layer_size,
        is_inference=True)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
    feeding = data_generator.data_name_feeding()
    test_batch_reader = data_generator.batch_reader_creator(
        manifest_path=args.decode_manifest_path,
        batch_size=args.num_samples,
        padding_to=2000,
        flatten=True,
        sort_by_duration=False,
        shuffle=False)
176
    # get one batch data for tuning
177 178 179 180 181 182 183 184 185 186 187
    infer_data = test_batch_reader().next()

    # run inference
    infer_results = paddle.infer(
        output_layer=output_probs, parameters=parameters, input=infer_data)
    num_steps = len(infer_results) / len(infer_data)
    probs_split = [
        infer_results[i * num_steps:(i + 1) * num_steps]
        for i in xrange(0, len(infer_data))
    ]

188 189 190 191 192 193
    # create grid for search
    cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
    cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
    params_grid = [(alpha, beta) for alpha in cand_alphas
                   for beta in cand_betas]

194 195 196 197 198 199 200 201 202 203 204 205 206
    ## tune parameters in loop
    for (alpha, beta) in params_grid:
        wer_sum, wer_counter = 0, 0
        ext_scorer = Scorer(alpha, beta, args.language_model_path)
        # beam search decode
        if args.decode_method == "beam_search":
            for i, probs in enumerate(probs_split):
                target_transcription = ''.join(
                    [vocab_list[index] for index in infer_data[i][1]])
                beam_search_result = ctc_beam_search_decoder(
                    probs_seq=probs,
                    vocabulary=vocab_list,
                    beam_size=args.beam_size,
207 208 209
                    blank_id=len(vocab_list),
                    cutoff_prob=args.cutoff_prob,
                    ext_scoring_func=ext_scorer, )
210 211 212 213 214 215 216 217
                wer_sum += wer(target_transcription, beam_search_result[0][1])
                wer_counter += 1
        # beam search using multiple processes
        elif args.decode_method == "beam_search_nproc":
            beam_search_nproc_results = ctc_beam_search_decoder_nproc(
                probs_split=probs_split,
                vocabulary=vocab_list,
                beam_size=args.beam_size,
218
                cutoff_prob=args.cutoff_prob,
219
                blank_id=len(vocab_list),
220
                ext_scoring_func=ext_scorer, )
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            for i, beam_search_result in enumerate(beam_search_nproc_results):
                target_transcription = ''.join(
                    [vocab_list[index] for index in infer_data[i][1]])
                wer_sum += wer(target_transcription, beam_search_result[0][1])
                wer_counter += 1
        else:
            raise ValueError("Decoding method [%s] is not supported." % method)

        print("alpha = %f\tbeta = %f\tWER = %f" %
              (alpha, beta, wer_sum / wer_counter))


def main():
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    tune()


if __name__ == '__main__':
    main()