deepspeech2.py 13.6 KB
Newer Older
H
huangyuxin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
huangyuxin 已提交
14
"""Deepspeech2 ASR Online Model"""
H
huangyuxin 已提交
15 16 17
from typing import Optional

import paddle
H
huangyuxin 已提交
18
import paddle.nn.functional as F
H
huangyuxin 已提交
19
from paddle import nn
H
huangyuxin 已提交
20 21
from yacs.config import CfgNode

H
huangyuxin 已提交
22
from deepspeech.models.ds2_online.conv import Conv2dSubsampling4Online
H
huangyuxin 已提交
23
from deepspeech.modules.ctc import CTCDecoder
H
huangyuxin 已提交
24 25 26 27 28
from deepspeech.utils import layer_tools
from deepspeech.utils.checkpoint import Checkpoint
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()

H
huangyuxin 已提交
29
__all__ = ['DeepSpeech2ModelOnline', 'DeepSpeech2InferModeOnline']
H
huangyuxin 已提交
30 31 32 33 34 35 36


class CRNNEncoder(nn.Layer):
    def __init__(self,
                 feat_size,
                 dict_size,
                 num_conv_layers=2,
H
huangyuxin 已提交
37
                 num_rnn_layers=4,
H
huangyuxin 已提交
38
                 rnn_size=1024,
39
                 rnn_direction='forward',
H
huangyuxin 已提交
40 41
                 num_fc_layers=2,
                 fc_layers_size_list=[512, 256],
42
                 use_gru=False):
H
huangyuxin 已提交
43 44 45 46 47
        super().__init__()
        self.rnn_size = rnn_size
        self.feat_size = feat_size  # 161 for linear
        self.dict_size = dict_size
        self.num_rnn_layers = num_rnn_layers
H
huangyuxin 已提交
48
        self.num_fc_layers = num_fc_layers
49
        self.rnn_direction = rnn_direction
H
huangyuxin 已提交
50
        self.fc_layers_size_list = fc_layers_size_list
H
huangyuxin 已提交
51
        self.conv = Conv2dSubsampling4Online(feat_size, 32, dropout_rate=0.0)
H
huangyuxin 已提交
52

H
huangyuxin 已提交
53
        i_size = self.conv.output_dim
H
huangyuxin 已提交
54

H
huangyuxin 已提交
55 56 57
        self.rnn = nn.LayerList()
        self.layernorm_list = nn.LayerList()
        self.fc_layers_list = nn.LayerList()
H
huangyuxin 已提交
58
        layernorm_size = rnn_size
H
huangyuxin 已提交
59 60

        if use_gru == True:
H
huangyuxin 已提交
61
            self.rnn.append(
H
huangyuxin 已提交
62 63
                nn.GRU(
                    input_size=i_size,
H
huangyuxin 已提交
64 65 66
                    hidden_size=rnn_size,
                    num_layers=1,
                    direction=rnn_direction))
H
huangyuxin 已提交
67
            self.layernorm_list.append(nn.LayerNorm(layernorm_size))
H
huangyuxin 已提交
68
            for i in range(1, num_rnn_layers):
H
huangyuxin 已提交
69
                self.rnn.append(
H
huangyuxin 已提交
70 71
                    nn.GRU(
                        input_size=layernorm_size,
H
huangyuxin 已提交
72 73 74
                        hidden_size=rnn_size,
                        num_layers=1,
                        direction=rnn_direction))
H
huangyuxin 已提交
75
                self.layernorm_list.append(nn.LayerNorm(layernorm_size))
H
huangyuxin 已提交
76
        else:
H
huangyuxin 已提交
77
            self.rnn.append(
H
huangyuxin 已提交
78
                nn.LSTM(
H
huangyuxin 已提交
79 80 81 82
                    input_size=i_size,
                    hidden_size=rnn_size,
                    num_layers=1,
                    direction=rnn_direction))
H
huangyuxin 已提交
83
            self.layernorm_list.append(nn.LayerNorm(layernorm_size))
H
huangyuxin 已提交
84
            for i in range(1, num_rnn_layers):
H
huangyuxin 已提交
85
                self.rnn.append(
H
huangyuxin 已提交
86
                    nn.LSTM(
H
huangyuxin 已提交
87 88 89 90
                        input_size=layernorm_size,
                        hidden_size=rnn_size,
                        num_layers=1,
                        direction=rnn_direction))
H
huangyuxin 已提交
91
                self.layernorm_list.append(nn.LayerNorm(layernorm_size))
H
huangyuxin 已提交
92 93
        fc_input_size = layernorm_size
        for i in range(self.num_fc_layers):
H
huangyuxin 已提交
94 95
            self.fc_layers_list.append(
                nn.Linear(fc_input_size, fc_layers_size_list[i]))
H
huangyuxin 已提交
96 97
            fc_input_size = fc_layers_size_list[i]

H
huangyuxin 已提交
98 99
    @property
    def output_size(self):
H
huangyuxin 已提交
100
        return self.fc_layers_size_list[-1]
H
huangyuxin 已提交
101

102
    def forward(self, x, x_lens):
H
huangyuxin 已提交
103 104 105
        """Compute Encoder outputs

        Args:
106 107
            x (Tensor): [B, T_input, D]
            x_lens (Tensor): [B]
H
huangyuxin 已提交
108
        Returns:
109
            x (Tensor): encoder outputs, [B, T_output, D]
H
huangyuxin 已提交
110
            x_lens (Tensor): encoder length, [B]
111
            rnn_final_state_list: list of final_states for RNN layers, [num_directions, batch_size, hidden_size] * num_rnn_layers
H
huangyuxin 已提交
112
        """
H
huangyuxin 已提交
113
        # [B, T, D]
H
huangyuxin 已提交
114 115 116 117
        # convolution group
        x, x_lens = self.conv(x, x_lens)
        # convert data from convolution feature map to sequence of vectors
        #B, C, D, T = paddle.shape(x)  # not work under jit
H
huangyuxin 已提交
118
        #x = x.transpose([0, 3, 1, 2])  #[B, T, C, D]
H
huangyuxin 已提交
119
        #x = x.reshape([B, T, C * D])  #[B, T, C*D]  # not work under jit
H
huangyuxin 已提交
120
        #x = x.reshape([0, 0, -1])  #[B, T, C*D]
H
huangyuxin 已提交
121 122

        # remove padding part
123 124 125 126
        init_state = None
        rnn_final_state_list = []
        x, final_state = self.rnn[0](x, init_state, x_lens)
        rnn_final_state_list.append(final_state)
H
huangyuxin 已提交
127 128
        x = self.layernorm_list[0](x)
        for i in range(1, self.num_rnn_layers):
129 130
            x, final_state = self.rnn[i](x, init_state, x_lens)  #[B, T, D]
            rnn_final_state_list.append(final_state)
H
huangyuxin 已提交
131
            x = self.layernorm_list[i](x)
H
huangyuxin 已提交
132 133 134 135

        for i in range(self.num_fc_layers):
            x = self.fc_layers_list[i](x)
            x = F.relu(x)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        return x, x_lens, rnn_final_state_list

    def forward(self, x, x_lens, init_state_list):
        """Compute Encoder outputs

        Args:
            x (Tensor): [B, feature_chunk_size, D]
            x_lens (Tensor): [B]
            init_state_list (list of Tensors): [ num_directions, batch_size, hidden_size] * num_rnn_layers
        Returns:
            x (Tensor): encoder outputs, [B, chunk_size, D]
            x_lens (Tensor): encoder length, [B]
            rnn_final_state_list: list of final_states for RNN layers, [num_directions, batch_size, hidden_size] * num_rnn_layers
        """
        rnn_final_state_list = []
        x, final_state = self.rnn[0](x, init_state_list[0], x_lens)
        rnn_final_state_list.append(final_state)
        x = self.layernorm_list[0](x)
        for i in range(1, self.num_rnn_layers):
            x, final_state = self.rnn[i](x, init_state_list[i],
                                         x_lens)  #[B, T, D]
            rnn_final_state_list.append(final_state)
            x = self.layernorm_list[i](x)

        for i in range(self.num_fc_layers):
            x = self.fc_layers_list[i](x)
            x = F.relu(x)
        return x, x_lens, rnn_final_state_list
H
huangyuxin 已提交
164 165


H
huangyuxin 已提交
166 167
class DeepSpeech2ModelOnline(nn.Layer):
    """The DeepSpeech2 network structure for online.
H
huangyuxin 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    :param audio_data: Audio spectrogram data layer.
    :type audio_data: Variable
    :param text_data: Transcription text data layer.
    :type text_data: Variable
    :param audio_len: Valid sequence length data layer.
    :type audio_len: Variable
    :param masks: Masks data layer to reset padding.
    :type masks: Variable
    :param dict_size: Dictionary size for tokenized transcription.
    :type dict_size: int
    :param num_conv_layers: Number of stacking convolution layers.
    :type num_conv_layers: int
    :param num_rnn_layers: Number of stacking RNN layers.
    :type num_rnn_layers: int
    :param rnn_size: RNN layer size (dimension of RNN cells).
    :type rnn_size: int
    :param use_gru: Use gru if set True. Use simple rnn if set False.
    :type use_gru: bool
    :type share_weights: bool
    :return: A tuple of an output unnormalized log probability layer (
             before softmax) and a ctc cost layer.
H
huangyuxin 已提交
190
    :rtype: tuple of LayerOutput
H
huangyuxin 已提交
191 192 193 194 195 196 197
    """

    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        default = CfgNode(
            dict(
                num_conv_layers=2,  #Number of stacking convolution layers.
H
huangyuxin 已提交
198
                num_rnn_layers=4,  #Number of stacking RNN layers.
H
huangyuxin 已提交
199
                rnn_layer_size=1024,  #RNN layer size (number of RNN cells).
H
huangyuxin 已提交
200
                num_fc_layers=2,
H
huangyuxin 已提交
201
                fc_layers_size_list=[512, 256],
H
huangyuxin 已提交
202 203 204 205 206 207 208 209 210 211 212 213
                use_gru=True,  #Use gru if set True. Use simple rnn if set False.
            ))
        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self,
                 feat_size,
                 dict_size,
                 num_conv_layers=2,
                 num_rnn_layers=3,
                 rnn_size=1024,
214
                 rnn_direction='forward',
H
huangyuxin 已提交
215 216
                 num_fc_layers=2,
                 fc_layers_size_list=[512, 256],
217
                 use_gru=False):
H
huangyuxin 已提交
218 219 220 221 222 223
        super().__init__()
        self.encoder = CRNNEncoder(
            feat_size=feat_size,
            dict_size=dict_size,
            num_conv_layers=num_conv_layers,
            num_rnn_layers=num_rnn_layers,
224
            rnn_direction=rnn_direction,
H
huangyuxin 已提交
225 226
            num_fc_layers=num_fc_layers,
            fc_layers_size_list=fc_layers_size_list,
H
huangyuxin 已提交
227
            rnn_size=rnn_size,
228
            use_gru=use_gru)
H
huangyuxin 已提交
229
        assert (self.encoder.output_size == fc_layers_size_list[-1])
H
huangyuxin 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        self.decoder = CTCDecoder(
            odim=dict_size,  # <blank> is in  vocab
            enc_n_units=self.encoder.output_size,
            blank_id=0,  # first token is <blank>
            dropout_rate=0.0,
            reduction=True,  # sum
            batch_average=True)  # sum / batch_size

    def forward(self, audio, audio_len, text, text_len):
        """Compute Model loss

        Args:
            audio (Tenosr): [B, T, D]
            audio_len (Tensor): [B]
            text (Tensor): [B, U]
            text_len (Tensor): [B]

        Returns:
            loss (Tenosr): [1]
        """
251
        eouts, eouts_len, rnn_final_state_list = self.encoder(audio, audio_len)
H
huangyuxin 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        loss = self.decoder(eouts, eouts_len, text, text_len)
        return loss

    @paddle.no_grad()
    def decode(self, audio, audio_len, vocab_list, decoding_method,
               lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
               cutoff_top_n, num_processes):
        # init once
        # decoders only accept string encoded in utf-8
        self.decoder.init_decode(
            beam_alpha=beam_alpha,
            beam_beta=beam_beta,
            lang_model_path=lang_model_path,
            vocab_list=vocab_list,
            decoding_method=decoding_method)

        eouts, eouts_len = self.encoder(audio, audio_len)
        probs = self.decoder.softmax(eouts)
        return self.decoder.decode_probs(
            probs.numpy(), eouts_len, vocab_list, decoding_method,
            lang_model_path, beam_alpha, beam_beta, beam_size, cutoff_prob,
            cutoff_top_n, num_processes)

    @classmethod
    def from_pretrained(cls, dataloader, config, checkpoint_path):
        """Build a DeepSpeech2Model model from a pretrained model.
        Parameters
        ----------
        dataloader: paddle.io.DataLoader

        config: yacs.config.CfgNode
            model configs
H
huangyuxin 已提交
284

H
huangyuxin 已提交
285 286
        checkpoint_path: Path or str
            the path of pretrained model checkpoint, without extension name
H
huangyuxin 已提交
287

H
huangyuxin 已提交
288 289 290 291 292 293 294 295 296 297
        Returns
        -------
        DeepSpeech2Model
            The model built from pretrained result.
        """
        model = cls(feat_size=dataloader.collate_fn.feature_size,
                    dict_size=dataloader.collate_fn.vocab_size,
                    num_conv_layers=config.model.num_conv_layers,
                    num_rnn_layers=config.model.num_rnn_layers,
                    rnn_size=config.model.rnn_layer_size,
298
                    rnn_direction=config.model.rnn_direction,
H
huangyuxin 已提交
299 300
                    num_fc_layers=config.model.num_fc_layers,
                    fc_layers_size_list=config.model.fc_layers_size_list,
301
                    use_gru=config.model.use_gru)
H
huangyuxin 已提交
302 303 304 305 306 307 308
        infos = Checkpoint().load_parameters(
            model, checkpoint_path=checkpoint_path)
        logger.info(f"checkpoint info: {infos}")
        layer_tools.summary(model)
        return model


H
huangyuxin 已提交
309
class DeepSpeech2InferModelOnline(DeepSpeech2ModelOnline):
H
huangyuxin 已提交
310 311 312 313 314 315
    def __init__(self,
                 feat_size,
                 dict_size,
                 num_conv_layers=2,
                 num_rnn_layers=3,
                 rnn_size=1024,
316
                 rnn_direction='forward',
H
huangyuxin 已提交
317 318
                 num_fc_layers=2,
                 fc_layers_size_list=[512, 256],
319
                 use_gru=False):
H
huangyuxin 已提交
320 321 322 323 324 325
        super().__init__(
            feat_size=feat_size,
            dict_size=dict_size,
            num_conv_layers=num_conv_layers,
            num_rnn_layers=num_rnn_layers,
            rnn_size=rnn_size,
326
            rnn_direction=rnn_direction,
H
huangyuxin 已提交
327 328
            num_fc_layers=num_fc_layers,
            fc_layers_size_list=fc_layers_size_list,
329
            use_gru=use_gru)
H
huangyuxin 已提交
330 331 332 333 334 335 336 337 338 339 340

    def forward(self, audio, audio_len):
        """export model function

        Args:
            audio (Tensor): [B, T, D]
            audio_len (Tensor): [B]

        Returns:
            probs: probs after softmax
        """
341
        eouts, eouts_len, rnn_final_state_list = self.encoder(audio, audio_len)
H
huangyuxin 已提交
342 343
        probs = self.decoder.softmax(eouts)
        return probs
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

    def forward(self, eouts_chunk_prefix, eouts_chunk_lens_prefix, audio_chunk,
                audio_chunk_len, init_state_list):
        """export model function

        Args:
            audio_chunk (Tensor): [B, T, D]
            audio_chunk_len (Tensor): [B]

        Returns:
            probs: probs after softmax
        """
        eouts_chunk, eouts_chunk_lens, rnn_final_state_list = self.encoder(
            audio_chunk, audio_chunk_len, init_state_list)
        eouts_chunk_new_prefix = paddle.concat(
            [eouts_chunk_prefix, eouts_chunk], axis=1)
        eouts_chunk_lens_new_prefix = paddle.add(eouts_chunk_lens_prefix,
                                                 eouts_chunk_lens)
        probs_chunk = self.decoder.softmax(eouts_chunk_new_prefix)
        return probs_chunk, eouts_chunk_new_prefix, eouts_chunk_lens_new_prefix, rnn_final_state_list