train.py 1.9 KB
Newer Older
H
Hui Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""Trainer for U2 model."""
import cProfile
import os
H
Hui Zhang 已提交
17 18 19

from paddle import distributed as dist

20
from deepspeech.exps.u2.config import get_cfg_defaults
H
Hui Zhang 已提交
21
# from deepspeech.exps.u2.trainer import U2Trainer as Trainer
H
Hui Zhang 已提交
22 23 24
from deepspeech.training.cli import default_argument_parser
from deepspeech.utils.utility import print_arguments

H
Hui Zhang 已提交
25 26
from deepspeech.exps.u2.model import U2Trainer as Trainer

H
Hui Zhang 已提交
27 28

def main_sp(config, args):
29
    exp = Trainer(config, args)
H
Hui Zhang 已提交
30
    exp.setup()
31
    exp.run()
H
Hui Zhang 已提交
32 33 34


def main(config, args):
35 36 37 38
    if args.device == "gpu" and args.nprocs > 1:
        dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
    else:
        main_sp(config, args)
H
Hui Zhang 已提交
39 40 41 42 43


if __name__ == "__main__":
    parser = default_argument_parser()
    args = parser.parse_args()
44
    print_arguments(args, globals())
H
Hui Zhang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57

    # https://yaml.org/type/float.html
    config = get_cfg_defaults()
    if args.config:
        config.merge_from_file(args.config)
    if args.opts:
        config.merge_from_list(args.opts)
    config.freeze()
    print(config)
    if args.dump_config:
        with open(args.dump_config, 'w') as f:
            print(config, file=f)

58 59 60 61
    # Setting for profiling
    pr = cProfile.Profile()
    pr.runcall(main, config, args)
    pr.dump_stats(os.path.join(args.output, 'train.profile'))