提交 5928da01 编写于 作者: W Wolfgang Denk

Merge branch 'next' of git://git.denx.de/u-boot-nand-flash into next

......@@ -38,8 +38,11 @@ COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o
COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o
COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
COBJS-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
COBJS-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
COBJS-$(CONFIG_NAND_MXC) += mxc_nand.o
COBJS-$(CONFIG_NAND_NDFC) += ndfc.o
COBJS-$(CONFIG_NAND_NOMADIK) += nomadik.o
COBJS-$(CONFIG_NAND_S3C2410) += s3c2410_nand.o
......
......@@ -47,6 +47,16 @@
#include <asm/arch/nand_defs.h>
#include <asm/arch/emif_defs.h>
/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT 10240
#define NAND_ECC_BUSY 0xC
#define NAND_4BITECC_MASK 0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
#define ECC_STATE_NO_ERR 0x0
#define ECC_STATE_TOO_MANY_ERRS 0x1
#define ECC_STATE_ERR_CORR_COMP_P 0x2
#define ECC_STATE_ERR_CORR_COMP_N 0x3
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
......@@ -170,6 +180,268 @@ static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *
}
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
/*
* TI uses a different layout for 4K page deviecs. Since the
* eccpos filed can hold only a limited number of entries, adding
* support for 4K page will result in compilation warnings
* 4K Support will be added later
*/
#ifdef CONFIG_SYS_NAND_PAGE_2K
.eccbytes = 40,
.eccpos = {
24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 22, },
},
#endif
};
#endif
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
u32 val;
switch (mode) {
case NAND_ECC_WRITE:
case NAND_ECC_READ:
/*
* Start a new ECC calculation for reading or writing 512 bytes
* of data.
*/
val = (emif_regs->NANDFCR & ~(3 << 4)) | (1 << 12);
emif_regs->NANDFCR = val;
break;
case NAND_ECC_READSYN:
val = emif_regs->NAND4BITECC1;
break;
default:
break;
}
}
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
return 0;
}
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat,
uint8_t *ecc_code)
{
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
unsigned int const1 = 0, const2 = 0;
unsigned char count1 = 0;
nand_davinci_4bit_readecc(mtd, hw_4ecc);
/*Convert 10 bit ecc value to 8 bit */
for (count1 = 0; count1 < 2; count1++) {
const2 = count1 * 5;
const1 = count1 * 2;
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
ecc_code[const2] = hw_4ecc[const1] & 0xFF;
/*
* Take 2 bits as LSB bits from val1 (count1=0) or val5
* (count1=1) and 6 bits from val2 (count1=0) or
* val5 (count1=1)
*/
ecc_code[const2 + 1] =
((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
0xFC);
/*
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
* 4 bits from val3 (count1=0) or val6 (count1=1)
*/
ecc_code[const2 + 2] =
((hw_4ecc[const1] >> 22) & 0xF) |
((hw_4ecc[const1 + 1] << 4) & 0xF0);
/*
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
* 2 bits from val4 (count1=0) or val7 (count1=1)
*/
ecc_code[const2 + 3] =
((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
((hw_4ecc[const1 + 1] >> 10) & 0xC0);
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
}
return 0;
}
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct nand_chip *this = mtd->priv;
unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int i;
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
unsigned short *pspare = NULL, *pspare1 = NULL;
unsigned int numerrors, erroraddress, errorvalue;
u32 val;
/*
* Check for an ECC where all bytes are 0xFF. If this is the case, we
* will assume we are looking at an erased page and we should ignore
* the ECC.
*/
for (i = 0; i < 10; i++) {
if (read_ecc[i] != 0xFF)
break;
}
if (i == 10)
return 0;
/* Convert 8 bit in to 10 bit */
pspare = (unsigned short *)&read_ecc[2];
pspare1 = (unsigned short *)&read_ecc[0];
/* Take 10 bits from 0th and 1st bytes */
ecc_10bit[0] = (*pspare1) & 0x3FF;
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
| (((pspare[0]) << 6) & 0x3C0);
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
| ((((pspare[1])) << 2) & 0x3FC);
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
ecc_10bit[4] = ((pspare[1]) >> 8)
| ((((pspare[2])) << 8) & 0x300);
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
| ((((pspare[3])) << 4) & 0x3F0);
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;
/*
* Write the parity values in the NAND Flash 4-bit ECC Load register.
* Write each parity value one at a time starting from 4bit_ecc_val8
* to 4bit_ecc_val1.
*/
for (i = 7; i >= 0; i--)
emif_regs->NAND4BITECCLOAD = ecc_10bit[i];
/*
* Perform a dummy read to the EMIF Revision Code and Status register.
* This is required to ensure time for syndrome calculation after
* writing the ECC values in previous step.
*/
val = emif_regs->NANDFSR;
/*
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
* A syndrome value of 0 means no bit errors. If the syndrome is
* non-zero then go further otherwise return.
*/
nand_davinci_4bit_readecc(mtd, hw_4ecc);
if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
return 0;
/*
* Clear any previous address calculation by doing a dummy read of an
* error address register.
*/
val = emif_regs->NANDERRADD1;
/*
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
* register to 1.
*/
emif_regs->NANDFCR |= 1 << 13;
/*
* Wait for the corr_state field (bits 8 to 11)in the
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
*/
i = NAND_TIMEOUT;
do {
val = emif_regs->NANDFSR;
val &= 0xc00;
i--;
} while ((i > 0) && val);
iserror = emif_regs->NANDFSR;
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
iserror = iserror >> 8;
/*
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
* corrected (five or more errors). The number of errors
* calculated (err_num field) differs from the number of errors
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
* correction complete (errors on bit 8 or 9).
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
* complete (error exists).
*/
if (iserror == ECC_STATE_NO_ERR) {
val = emif_regs->NANDERRVAL1;
return 0;
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
val = emif_regs->NANDERRVAL1;
return -1;
}
numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
/* Read the error address, error value and correct */
for (i = 0; i < numerrors; i++) {
if (i > 1) {
erroraddress =
((emif_regs->NANDERRADD2 >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((emif_regs->NANDERRVAL2 >>
(16 * (i & 1))) & 0xFF);
} else {
erroraddress =
((emif_regs->NANDERRADD1 >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((emif_regs->NANDERRVAL1 >>
(16 * (i & 1))) & 0xFF);
}
/* xor the corrupt data with error value */
if (erroraddress < 512)
dat[erroraddress] ^= errorvalue;
}
return numerrors;
}
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
return emif_regs->NANDFSR & 0x1;
......@@ -215,7 +487,7 @@ void davinci_nand_init(struct nand_chip *nand)
{
nand->chip_delay = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
nand->options = NAND_USE_FLASH_BBT;
nand->options |= NAND_USE_FLASH_BBT;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
nand->ecc.mode = NAND_ECC_HW;
......@@ -227,7 +499,15 @@ void davinci_nand_init(struct nand_chip *nand)
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = 512;
nand->ecc.bytes = 10;
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
nand->ecc.correct = nand_davinci_4bit_correct_data;
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
/* Set address of hardware control function */
nand->cmd_ctrl = nand_davinci_hwcontrol;
......
......@@ -662,7 +662,7 @@ static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
static int fsl_elbc_read_page(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf)
uint8_t *buf, int page)
{
fsl_elbc_read_buf(mtd, buf, mtd->writesize);
fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
......
/*
* (C) Copyright 2006
* KwikByte <kb9200_dev@kwikbyte.com>
*
* (C) Copyright 2009
* Matthias Kaehlcke <matthias@kaehlcke.net>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/AT91RM9200.h>
#include <asm/arch/hardware.h>
#include <nand.h>
/*
* hardware specific access to control-lines
*/
#define MASK_ALE (1 << 22) /* our ALE is A22 */
#define MASK_CLE (1 << 21) /* our CLE is A21 */
#define KB9202_NAND_NCE (1 << 28) /* EN* on D28 */
#define KB9202_NAND_BUSY (1 << 29) /* RB* on D29 */
#define KB9202_SMC2_NWS (1 << 2)
#define KB9202_SMC2_TDF (1 << 8)
#define KB9202_SMC2_RWSETUP (1 << 24)
#define KB9202_SMC2_RWHOLD (1 << 29)
/*
* Board-specific function to access device control signals
*/
static void kb9202_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
if (ctrl & NAND_CTRL_CHANGE) {
ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
/* clear ALE and CLE bits */
IO_ADDR_W &= ~(MASK_ALE | MASK_CLE);
if (ctrl & NAND_CLE)
IO_ADDR_W |= MASK_CLE;
if (ctrl & NAND_ALE)
IO_ADDR_W |= MASK_ALE;
this->IO_ADDR_W = (void *) IO_ADDR_W;
if (ctrl & NAND_NCE)
writel(KB9202_NAND_NCE, AT91C_PIOC_CODR);
else
writel(KB9202_NAND_NCE, AT91C_PIOC_SODR);
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
/*
* Board-specific function to access the device ready signal.
*/
static int kb9202_nand_ready(struct mtd_info *mtd)
{
return readl(AT91C_PIOC_PDSR) & KB9202_NAND_BUSY;
}
/*
* Board-specific NAND init. Copied from include/linux/mtd/nand.h for reference.
*
* struct nand_chip - NAND Private Flash Chip Data
* @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
* @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device
* @hwcontrol: [BOARDSPECIFIC] hardwarespecific function for accesing control-lines
* @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
* If set to NULL no access to ready/busy is available and the ready/busy information
* is read from the chip status register
* @enable_hwecc: [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
* be provided if a hardware ECC is available
* @eccmode: [BOARDSPECIFIC] mode of ecc, see defines
* @chip_delay: [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
* @options: [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
* special functionality. See the defines for further explanation
*/
/*
* This routine initializes controller and GPIOs.
*/
int board_nand_init(struct nand_chip *nand)
{
unsigned int value;
nand->ecc.mode = NAND_ECC_SOFT;
nand->cmd_ctrl = kb9202_nand_hwcontrol;
nand->dev_ready = kb9202_nand_ready;
/* in case running outside of bootloader */
writel(1 << AT91C_ID_PIOC, AT91C_PMC_PCER);
/* setup nand flash access (allow ample margin) */
/* 4 wait states, 1 setup, 1 hold, 1 float for 8-bit device */
writel(AT91C_SMC2_WSEN | KB9202_SMC2_NWS | KB9202_SMC2_TDF |
AT91C_SMC2_DBW_8 | KB9202_SMC2_RWSETUP | KB9202_SMC2_RWHOLD,
AT91C_SMC_CSR3);
/* enable internal NAND controller */
value = readl(AT91C_EBI_CSA);
value |= AT91C_EBI_CS3A_SMC_SmartMedia;
writel(value, AT91C_EBI_CSA);
/* enable SMOE/SMWE */
writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_ASR);
writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_PDR);
writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_OER);
/* set NCE to high */
writel(KB9202_NAND_NCE, AT91C_PIOC_SODR);
/* disable output on pin connected to the busy line of the NAND */
writel(KB9202_NAND_BUSY, AT91C_PIOC_ODR);
/* enable the PIO to control NCE and BUSY */
writel(KB9202_NAND_NCE | KB9202_NAND_BUSY, AT91C_PIOC_PER);
/* enable output for NCE */
writel(KB9202_NAND_NCE, AT91C_PIOC_OER);
return (0);
}
/*
* (C) Copyright 2009
* Heiko Schocher, DENX Software Engineering, hs@denx.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#define CONFIG_NAND_MODE_REG (void *)(CONFIG_SYS_NAND_BASE + 0x20000)
#define CONFIG_NAND_DATA_REG (void *)(CONFIG_SYS_NAND_BASE + 0x30000)
#define read_mode() in_8(CONFIG_NAND_MODE_REG)
#define write_mode(val) out_8(CONFIG_NAND_MODE_REG, val)
#define read_data() in_8(CONFIG_NAND_DATA_REG)
#define write_data(val) out_8(CONFIG_NAND_DATA_REG, val)
#define KPN_RDY2 (1 << 7)
#define KPN_RDY1 (1 << 6)
#define KPN_WPN (1 << 4)
#define KPN_CE2N (1 << 3)
#define KPN_CE1N (1 << 2)
#define KPN_ALE (1 << 1)
#define KPN_CLE (1 << 0)
#define KPN_DEFAULT_CHIP_DELAY 50
static int kpn_chip_ready(void)
{
if (read_mode() & KPN_RDY1)
return 1;
return 0;
}
static void kpn_wait_rdy(void)
{
int cnt = 1000000;
while (--cnt && !kpn_chip_ready())
udelay(1);
if (!cnt)
printf ("timeout while waiting for RDY\n");
}
static void kpn_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
u8 reg_val = read_mode();
if (ctrl & NAND_CTRL_CHANGE) {
reg_val = reg_val & ~(KPN_ALE + KPN_CLE);
if (ctrl & NAND_CLE)
reg_val = reg_val | KPN_CLE;
if (ctrl & NAND_ALE)
reg_val = reg_val | KPN_ALE;
if (ctrl & NAND_NCE)
reg_val = reg_val & ~KPN_CE1N;
else
reg_val = reg_val | KPN_CE1N;
write_mode(reg_val);
}
if (cmd != NAND_CMD_NONE)
write_data(cmd);
/* wait until flash is ready */
kpn_wait_rdy();
}
static u_char kpn_nand_read_byte(struct mtd_info *mtd)
{
return read_data();
}
static void kpn_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++) {
write_data(buf[i]);
kpn_wait_rdy();
}
}
static void kpn_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = read_data();
}
static int kpn_nand_dev_ready(struct mtd_info *mtd)
{
kpn_wait_rdy();
return 1;
}
int board_nand_init(struct nand_chip *nand)
{
nand->ecc.mode = NAND_ECC_SOFT;
/* Reference hardware control function */
nand->cmd_ctrl = kpn_nand_hwcontrol;
nand->read_byte = kpn_nand_read_byte;
nand->write_buf = kpn_nand_write_buf;
nand->read_buf = kpn_nand_read_buf;
nand->dev_ready = kpn_nand_dev_ready;
nand->chip_delay = KPN_DEFAULT_CHIP_DELAY;
/* reset mode register */
write_mode(KPN_CE1N + KPN_CE2N + KPN_WPN);
return 0;
}
此差异已折叠。
......@@ -895,7 +895,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
* @buf: buffer to store read data
*/
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
uint8_t *buf, int page)
{
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
......@@ -909,7 +909,7 @@ static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
* @buf: buffer to store read data
*/
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
......@@ -919,7 +919,7 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
chip->ecc.read_page_raw(mtd, chip, buf);
chip->ecc.read_page_raw(mtd, chip, buf, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
......@@ -1032,7 +1032,7 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint3
* Not for syndrome calculating ecc controllers which need a special oob layout
*/
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
......@@ -1067,6 +1067,54 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
return 0;
}
/**
* nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
*
* Hardware ECC for large page chips, require OOB to be read first.
* For this ECC mode, the write_page method is re-used from ECC_HW.
* These methods read/write ECC from the OOB area, unlike the
* ECC_HW_SYNDROME support with multiple ECC steps, follows the
* "infix ECC" scheme and reads/writes ECC from the data area, by
* overwriting the NAND manufacturer bad block markings.
*/
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *ecc_calc = chip->buffers->ecccalc;
/* Read the OOB area first */
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
/**
* nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
* @mtd: mtd info structure
......@@ -1077,7 +1125,7 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
* we need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
uint8_t *buf, int page)
{
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
......@@ -1219,11 +1267,13 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
/* Now read the page into the buffer */
if (unlikely(ops->mode == MTD_OOB_RAW))
ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
ret = chip->ecc.read_page_raw(mtd, chip,
bufpoi, page);
else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
else
ret = chip->ecc.read_page(mtd, chip, bufpoi);
ret = chip->ecc.read_page(mtd, chip, bufpoi,
page);
if (ret < 0)
break;
......@@ -2728,6 +2778,17 @@ int nand_scan_tail(struct mtd_info *mtd)
chip->ecc.write_page_raw = nand_write_page_raw;
switch (chip->ecc.mode) {
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!chip->ecc.calculate || !chip->ecc.correct ||
!chip->ecc.hwctl) {
printk(KERN_WARNING "No ECC functions supplied, "
"Hardware ECC not possible\n");
BUG();
}
if (!chip->ecc.read_page)
chip->ecc.read_page = nand_read_page_hwecc_oob_first;
case NAND_ECC_HW:
/* Use standard hwecc read page function ? */
if (!chip->ecc.read_page)
......
......@@ -55,6 +55,16 @@ typedef struct {
dv_reg NANDF2ECC;
dv_reg NANDF3ECC;
dv_reg NANDF4ECC;
u_int8_t RSVD2[60];
dv_reg NAND4BITECCLOAD;
dv_reg NAND4BITECC1;
dv_reg NAND4BITECC2;
dv_reg NAND4BITECC3;
dv_reg NAND4BITECC4;
dv_reg NANDERRADD1;
dv_reg NANDERRADD2;
dv_reg NANDERRVAL1;
dv_reg NANDERRVAL2;
} emif_registers;
typedef emif_registers *emifregs;
......
......@@ -324,6 +324,12 @@
#define CONFIG_SYS_DTT_HYSTERESIS 3
#define CONFIG_SYS_DTT_BUS_NUM (CONFIG_SYS_MAX_I2C_BUS)
#if defined(CONFIG_CMD_NAND)
#define CONFIG_NAND_KMETER1
#define CONFIG_SYS_MAX_NAND_DEVICE 1
#define CONFIG_SYS_NAND_BASE CONFIG_SYS_PIGGY_BASE
#endif
#if defined(CONFIG_PCI)
#define CONFIG_CMD_PCI
#endif
......
......@@ -128,6 +128,7 @@ typedef enum {
NAND_ECC_SOFT,
NAND_ECC_HW,
NAND_ECC_HW_SYNDROME,
NAND_ECC_HW_OOB_FIRST,
} nand_ecc_modes_t;
/*
......@@ -268,13 +269,13 @@ struct nand_ecc_ctrl {
uint8_t *calc_ecc);
int (*read_page_raw)(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf);
uint8_t *buf, int page);
void (*write_page_raw)(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf);
int (*read_page)(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf);
uint8_t *buf, int page);
int (*read_subpage)(struct mtd_info *mtd,
struct nand_chip *chip,
uint32_t offs, uint32_t len,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册