lpc32xx_nand_slc.c 17.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4 5 6
/*
 * LPC32xx SLC NAND flash controller driver
 *
 * (C) Copyright 2015 Vladimir Zapolskiy <vz@mleia.com>
 *
7 8 9 10 11
 * Hardware ECC support original source code
 * Copyright (C) 2008 by NXP Semiconductors
 * Author: Kevin Wells
 *
 * Copyright (c) 2015 Tyco Fire Protection Products.
12 13 14 15
 */

#include <common.h>
#include <nand.h>
16
#include <linux/mtd/nand_ecc.h>
17
#include <linux/errno.h>
18
#include <asm/io.h>
19
#include <asm/arch/config.h>
20 21
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>
22 23 24 25 26 27
#include <asm/arch/dma.h>
#include <asm/arch/cpu.h>

#if defined(CONFIG_DMA_LPC32XX) && defined(CONFIG_SPL_BUILD)
#warning "DMA support in SPL image is not tested"
#endif
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

struct lpc32xx_nand_slc_regs {
	u32 data;
	u32 addr;
	u32 cmd;
	u32 stop;
	u32 ctrl;
	u32 cfg;
	u32 stat;
	u32 int_stat;
	u32 ien;
	u32 isr;
	u32 icr;
	u32 tac;
	u32 tc;
	u32 ecc;
	u32 dma_data;
};

/* CFG register */
#define CFG_CE_LOW		(1 << 5)
49 50 51 52
#define CFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
#define CFG_ECC_EN		(1 << 3) /* ECC enable bit */
#define CFG_DMA_BURST		(1 << 2) /* DMA burst bit */
#define CFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
53 54 55

/* CTRL register */
#define CTRL_SW_RESET		(1 << 2)
56 57
#define CTRL_ECC_CLEAR		(1 << 1) /* Reset ECC bit */
#define CTRL_DMA_START		(1 << 0) /* Start DMA channel bit */
58 59

/* STAT register */
60
#define STAT_DMA_FIFO		(1 << 2) /* DMA FIFO has data bit */
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#define STAT_NAND_READY		(1 << 0)

/* INT_STAT register */
#define INT_STAT_TC		(1 << 1)
#define INT_STAT_RDY		(1 << 0)

/* TAC register bits, be aware of overflows */
#define TAC_W_RDY(n)		(max_t(uint32_t, (n), 0xF) << 28)
#define TAC_W_WIDTH(n)		(max_t(uint32_t, (n), 0xF) << 24)
#define TAC_W_HOLD(n)		(max_t(uint32_t, (n), 0xF) << 20)
#define TAC_W_SETUP(n)		(max_t(uint32_t, (n), 0xF) << 16)
#define TAC_R_RDY(n)		(max_t(uint32_t, (n), 0xF) << 12)
#define TAC_R_WIDTH(n)		(max_t(uint32_t, (n), 0xF) << 8)
#define TAC_R_HOLD(n)		(max_t(uint32_t, (n), 0xF) << 4)
#define TAC_R_SETUP(n)		(max_t(uint32_t, (n), 0xF) << 0)

77 78 79 80 81 82 83 84 85 86 87 88 89
/* NAND ECC Layout for small page NAND devices
 * Note: For large page devices, the default layouts are used. */
static struct nand_ecclayout lpc32xx_nand_oob_16 = {
	.eccbytes = 6,
	.eccpos = {10, 11, 12, 13, 14, 15},
	.oobfree = {
		{.offset = 0,
		 . length = 4},
		{.offset = 6,
		 . length = 4}
		}
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#if defined(CONFIG_DMA_LPC32XX)
#define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / CONFIG_SYS_NAND_ECCSIZE)

/*
 * DMA Descriptors
 * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area)
 * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area)
 */
static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1];
static u32 ecc_buffer[8]; /* MAX ECC size */
static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */

/*
 * Helper macro for the DMA client (i.e. NAND SLC):
 * - to write the next DMA linked list item address
 *   (see arch/include/asm/arch-lpc32xx/dma.h).
 * - to assign the DMA data register to DMA source or destination address.
 * - to assign the ECC register to DMA source or destination address.
 */
#define lpc32xx_dmac_next_lli(x)	((u32)x)
#define lpc32xx_dmac_set_dma_data()	((u32)&lpc32xx_nand_slc_regs->dma_data)
#define lpc32xx_dmac_set_ecc()		((u32)&lpc32xx_nand_slc_regs->ecc)
#endif

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs
	= (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE;

static void lpc32xx_nand_init(void)
{
	uint32_t hclk = get_hclk_clk_rate();

	/* Reset SLC NAND controller */
	writel(CTRL_SW_RESET, &lpc32xx_nand_slc_regs->ctrl);

	/* 8-bit bus, no DMA, no ECC, ordinary CE signal */
	writel(0, &lpc32xx_nand_slc_regs->cfg);

	/* Interrupts disabled and cleared */
	writel(0, &lpc32xx_nand_slc_regs->ien);
	writel(INT_STAT_TC | INT_STAT_RDY,
	       &lpc32xx_nand_slc_regs->icr);

	/* Configure NAND flash timings */
	writel(TAC_W_RDY(CONFIG_LPC32XX_NAND_SLC_WDR_CLKS) |
	       TAC_W_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_WWIDTH) |
	       TAC_W_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_WHOLD) |
	       TAC_W_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_WSETUP) |
	       TAC_R_RDY(CONFIG_LPC32XX_NAND_SLC_RDR_CLKS) |
	       TAC_R_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_RWIDTH) |
	       TAC_R_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_RHOLD) |
	       TAC_R_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_RSETUP),
	       &lpc32xx_nand_slc_regs->tac);
}

static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd,
				  int cmd, unsigned int ctrl)
{
	debug("ctrl: 0x%08x, cmd: 0x%08x\n", ctrl, cmd);

	if (ctrl & NAND_NCE)
		setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);
	else
		clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);

	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE)
		writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->cmd);
	else if (ctrl & NAND_ALE)
		writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->addr);
}

static int lpc32xx_nand_dev_ready(struct mtd_info *mtd)
{
	return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#if defined(CONFIG_DMA_LPC32XX)
/*
 * Prepares DMA descriptors for NAND RD/WR operations
 * If the size is < 256 Bytes then it is assumed to be
 * an OOB transfer
 */
static void lpc32xx_nand_dma_configure(struct nand_chip *chip,
				       const u8 *buffer, int size,
				       int read)
{
	u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
	struct lpc32xx_dmac_ll *dmalist_cur;
	struct lpc32xx_dmac_ll *dmalist_cur_ecc;

	/*
	 * CTRL descriptor entry for reading ECC
	 * Copy Multiple times to sync DMA with Flash Controller
	 */
	ecc_ctrl = 0x5 |
			DMAC_CHAN_SRC_BURST_1 |
			DMAC_CHAN_DEST_BURST_1 |
			DMAC_CHAN_SRC_WIDTH_32 |
			DMAC_CHAN_DEST_WIDTH_32 |
			DMAC_CHAN_DEST_AHB1;

	/* CTRL descriptor entry for reading/writing Data */
	ctrl = (CONFIG_SYS_NAND_ECCSIZE / 4) |
			DMAC_CHAN_SRC_BURST_4 |
			DMAC_CHAN_DEST_BURST_4 |
			DMAC_CHAN_SRC_WIDTH_32 |
			DMAC_CHAN_DEST_WIDTH_32 |
			DMAC_CHAN_DEST_AHB1;

	/* CTRL descriptor entry for reading/writing Spare Area */
	oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) |
			DMAC_CHAN_SRC_BURST_4 |
			DMAC_CHAN_DEST_BURST_4 |
			DMAC_CHAN_SRC_WIDTH_32 |
			DMAC_CHAN_DEST_WIDTH_32 |
			DMAC_CHAN_DEST_AHB1;

	if (read) {
		dmasrc = lpc32xx_dmac_set_dma_data();
		dmadst = (u32)buffer;
		ctrl |= DMAC_CHAN_DEST_AUTOINC;
	} else {
		dmadst = lpc32xx_dmac_set_dma_data();
		dmasrc = (u32)buffer;
		ctrl |= DMAC_CHAN_SRC_AUTOINC;
	}

	/*
	 * Write Operation Sequence for Small Block NAND
	 * ----------------------------------------------------------
	 * 1. X'fer 256 bytes of data from Memory to Flash.
	 * 2. Copy generated ECC data from Register to Spare Area
	 * 3. X'fer next 256 bytes of data from Memory to Flash.
	 * 4. Copy generated ECC data from Register to Spare Area.
	 * 5. X'fer 16 byets of Spare area from Memory to Flash.
	 * Read Operation Sequence for Small Block NAND
	 * ----------------------------------------------------------
	 * 1. X'fer 256 bytes of data from Flash to Memory.
	 * 2. Copy generated ECC data from Register to ECC calc Buffer.
	 * 3. X'fer next 256 bytes of data from Flash to Memory.
	 * 4. Copy generated ECC data from Register to ECC calc Buffer.
	 * 5. X'fer 16 bytes of Spare area from Flash to Memory.
	 * Write Operation Sequence for Large Block NAND
	 * ----------------------------------------------------------
	 * 1. Steps(1-4) of Write Operations repeate for four times
	 * which generates 16 DMA descriptors to X'fer 2048 bytes of
	 * data & 32 bytes of ECC data.
	 * 2. X'fer 64 bytes of Spare area from Memory to Flash.
	 * Read Operation Sequence for Large Block NAND
	 * ----------------------------------------------------------
	 * 1. Steps(1-4) of Read Operations repeate for four times
	 * which generates 16 DMA descriptors to X'fer 2048 bytes of
	 * data & 32 bytes of ECC data.
	 * 2. X'fer 64 bytes of Spare area from Flash to Memory.
	 */

	for (i = 0; i < size/CONFIG_SYS_NAND_ECCSIZE; i++) {
		dmalist_cur = &dmalist[i * 2];
		dmalist_cur_ecc = &dmalist[(i * 2) + 1];

		dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256)));
		dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst);
		dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc);
		dmalist_cur->next_ctrl = ctrl;

		dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc();
		dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i];
		dmalist_cur_ecc->next_lli =
			lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]);
		dmalist_cur_ecc->next_ctrl = ecc_ctrl;
	}

	if (i) { /* Data only transfer */
		dmalist_cur_ecc = &dmalist[(i * 2) - 1];
		dmalist_cur_ecc->next_lli = 0;
		dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN;
		return;
	}

	/* OOB only transfer */
	if (read) {
		dmasrc = lpc32xx_dmac_set_dma_data();
		dmadst = (u32)buffer;
		oob_ctrl |= DMAC_CHAN_DEST_AUTOINC;
	} else {
		dmadst = lpc32xx_dmac_set_dma_data();
		dmasrc = (u32)buffer;
		oob_ctrl |= DMAC_CHAN_SRC_AUTOINC;
	}

	/* Read/ Write Spare Area Data To/From Flash */
	dmalist_cur = &dmalist[i * 2];
	dmalist_cur->dma_src = dmasrc;
	dmalist_cur->dma_dest = dmadst;
	dmalist_cur->next_lli = 0;
	dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN);
}

static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf,
			      int len, int read)
{
293
	struct nand_chip *chip = mtd_to_nand(mtd);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	u32 config;
	int ret;

	/* DMA Channel Configuration */
	config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) |
		(read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) |
		(read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) |
		DMAC_CHAN_ENABLE;

	/* Prepare DMA descriptors */
	lpc32xx_nand_dma_configure(chip, buf, len, read);

	/* Setup SLC controller and start transfer */
	if (read)
		setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
	else  /* NAND_ECC_WRITE */
		clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
	setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST);

	/* Write length for new transfers */
	if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) |
	      readl(&lpc32xx_nand_slc_regs->tc))) {
		int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0;
		writel(len + tmp, &lpc32xx_nand_slc_regs->tc);
	}

	setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);

	/* Start DMA transfers */
	ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config);
	if (unlikely(ret < 0))
		BUG();


	/* Wait for NAND to be ready */
	while (!lpc32xx_nand_dev_ready(mtd))
		;

	/* Wait till DMA transfer is DONE */
	if (lpc32xx_dma_wait_status(dmachan))
		pr_err("NAND DMA transfer error!\r\n");

	/* Stop DMA & HW ECC */
	clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
	clrbits_le32(&lpc32xx_nand_slc_regs->cfg,
		     CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC);
}

static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count)
{
	int i;
	for (i = 0; i < (count * CONFIG_SYS_NAND_ECCBYTES);
	     i += CONFIG_SYS_NAND_ECCBYTES) {
		u32 ce = ecc[i / CONFIG_SYS_NAND_ECCBYTES];
		ce = ~(ce << 2) & 0xFFFFFF;
		spare[i+2] = (u8)(ce & 0xFF); ce >>= 8;
		spare[i+1] = (u8)(ce & 0xFF); ce >>= 8;
		spare[i]   = (u8)(ce & 0xFF);
	}
	return 0;
}

static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
				 uint8_t *ecc_code)
{
	return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS);
}

/*
 * Enables and prepares SLC NAND controller
 * for doing data transfers with H/W ECC enabled.
 */
static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode)
{
	/* Clear ECC */
	writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl);

	/* Setup SLC controller for H/W ECC operations */
	setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC);
}

/*
 * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s)
 * mtd:	MTD block structure
 * dat:	raw data read from the chip
 * read_ecc:	ECC from the chip
 * calc_ecc:	the ECC calculated from raw data
 *
 * Detect and correct a 1 bit error for 256 byte block
 */
int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat,
			 u_char *read_ecc, u_char *calc_ecc)
{
	unsigned int i;
	int ret1, ret2 = 0;
	u_char *r = read_ecc;
	u_char *c = calc_ecc;
	u16 data_offset = 0;

	for (i = 0 ; i < ECCSTEPS ; i++) {
		r += CONFIG_SYS_NAND_ECCBYTES;
		c += CONFIG_SYS_NAND_ECCBYTES;
		data_offset += CONFIG_SYS_NAND_ECCSIZE;

		ret1 = nand_correct_data(mtd, dat + data_offset, r, c);
		if (ret1 < 0)
			return -EBADMSG;
		else
			ret2 += ret1;
	}

	return ret2;
}
#endif

#if defined(CONFIG_DMA_LPC32XX)
static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	lpc32xx_nand_xfer(mtd, buf, len, 1);
}
#else
415 416 417 418 419
static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	while (len-- > 0)
		*buf++ = readl(&lpc32xx_nand_slc_regs->data);
}
420
#endif
421 422 423 424 425 426

static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
{
	return readl(&lpc32xx_nand_slc_regs->data);
}

427 428 429 430 431 432 433
#if defined(CONFIG_DMA_LPC32XX)
static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				  int len)
{
	lpc32xx_nand_xfer(mtd, buf, len, 0);
}
#else
434 435 436 437 438
static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	while (len-- > 0)
		writel(*buf++, &lpc32xx_nand_slc_regs->data);
}
439
#endif
440 441 442 443 444 445

static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
{
	writel(byte, &lpc32xx_nand_slc_regs->data);
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
#if defined(CONFIG_DMA_LPC32XX)
/* Reuse the logic from "nand_read_page_hwecc()" */
static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	int i;
	int stat;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	unsigned int max_bitflips = 0;

	/*
	 * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
	 * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
	 * of a page size using DMA controller scatter/gather mode through
	 * linked list; the ECC read is done without any software intervention.
	 */

	lpc32xx_hwecc_enable(mtd, NAND_ECC_READ);
	lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
	lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
	lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]);
	if (stat < 0)
		mtd->ecc_stats.failed++;
	else {
		mtd->ecc_stats.corrected += stat;
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}

	return max_bitflips;
}

/* Reuse the logic from "nand_write_page_hwecc()" */
static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
				    struct nand_chip *chip,
488 489
				    const uint8_t *buf, int oob_required,
				    int page)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
{
	int i;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	const uint8_t *p = buf;
	uint32_t *eccpos = chip->ecc.layout->eccpos;

	/*
	 * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
	 * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
	 * of a page size using DMA controller scatter/gather mode through
	 * linked list; the ECC read is done without any software intervention.
	 */

	lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE);
	lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
	lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);

	for (i = 0; i < chip->ecc.total; i++)
		chip->oob_poi[eccpos[i]] = ecc_calc[i];

	lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}
#endif

516 517 518
/*
 * LPC32xx has only one SLC NAND controller, don't utilize
 * CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function
B
Bin Meng 已提交
519
 * both in SPL NAND and U-Boot images.
520 521 522
 */
int board_nand_init(struct nand_chip *lpc32xx_chip)
{
523 524 525 526 527 528 529 530 531 532 533 534
#if defined(CONFIG_DMA_LPC32XX)
	int ret;

	/* Acquire a channel for our use */
	ret = lpc32xx_dma_get_channel();
	if (unlikely(ret < 0)) {
		pr_info("Unable to get free DMA channel for NAND transfers\n");
		return -1;
	}
	dmachan = (unsigned int)ret;
#endif

535 536 537
	lpc32xx_chip->cmd_ctrl  = lpc32xx_nand_cmd_ctrl;
	lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready;

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	/*
	 * The implementation of these functions is quite common, but
	 * they MUST be defined, because access to data register
	 * is strictly 32-bit aligned.
	 */
	lpc32xx_chip->read_byte  = lpc32xx_read_byte;
	lpc32xx_chip->write_byte = lpc32xx_write_byte;

#if defined(CONFIG_DMA_LPC32XX)
	/* Hardware ECC calculation is supported when DMA driver is selected */
	lpc32xx_chip->ecc.mode		= NAND_ECC_HW;

	lpc32xx_chip->read_buf		= lpc32xx_dma_read_buf;
	lpc32xx_chip->write_buf		= lpc32xx_dma_write_buf;

	lpc32xx_chip->ecc.calculate	= lpc32xx_ecc_calculate;
	lpc32xx_chip->ecc.correct	= lpc32xx_correct_data;
	lpc32xx_chip->ecc.hwctl		= lpc32xx_hwecc_enable;
	lpc32xx_chip->chip_delay	= 2000;

	lpc32xx_chip->ecc.read_page	= lpc32xx_read_page_hwecc;
	lpc32xx_chip->ecc.write_page	= lpc32xx_write_page_hwecc;
	lpc32xx_chip->options		|= NAND_NO_SUBPAGE_WRITE;
#else
562 563 564 565 566 567 568 569 570 571 572 573 574 575
	/*
	 * Hardware ECC calculation is not supported by the driver,
	 * because it requires DMA support, see LPC32x0 User Manual,
	 * note after SLC_ECC register description (UM10326, p.198)
	 */
	lpc32xx_chip->ecc.mode = NAND_ECC_SOFT;

	/*
	 * The implementation of these functions is quite common, but
	 * they MUST be defined, because access to data register
	 * is strictly 32-bit aligned.
	 */
	lpc32xx_chip->read_buf   = lpc32xx_read_buf;
	lpc32xx_chip->write_buf  = lpc32xx_write_buf;
576
#endif
577 578

	/*
579
	 * These values are predefined
580 581
	 * for both small and large page NAND flash devices.
	 */
582 583
	lpc32xx_chip->ecc.size     = CONFIG_SYS_NAND_ECCSIZE;
	lpc32xx_chip->ecc.bytes    = CONFIG_SYS_NAND_ECCBYTES;
584 585
	lpc32xx_chip->ecc.strength = 1;

586 587 588
	if (CONFIG_SYS_NAND_PAGE_SIZE != NAND_LARGE_BLOCK_PAGE_SIZE)
		lpc32xx_chip->ecc.layout = &lpc32xx_nand_oob_16;

589 590 591 592 593 594 595 596 597
#if defined(CONFIG_SYS_NAND_USE_FLASH_BBT)
	lpc32xx_chip->bbt_options |= NAND_BBT_USE_FLASH;
#endif

	/* Initialize NAND interface */
	lpc32xx_nand_init();

	return 0;
}