README 126.7 KB
Newer Older
W
wdenk 已提交
1
#
2
# (C) Copyright 2000 - 2008
W
wdenk 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
#
# See file CREDITS for list of people who contributed to this
# project.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
#

Summary:
========

27
This directory contains the source code for U-Boot, a boot loader for
W
wdenk 已提交
28 29 30 31
Embedded boards based on PowerPC, ARM, MIPS and several other
processors, which can be installed in a boot ROM and used to
initialize and test the hardware or to download and run application
code.
W
wdenk 已提交
32 33

The development of U-Boot is closely related to Linux: some parts of
34 35
the source code originate in the Linux source tree, we have some
header files in common, and special provision has been made to
W
wdenk 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
support booting of Linux images.

Some attention has been paid to make this software easily
configurable and extendable. For instance, all monitor commands are
implemented with the same call interface, so that it's very easy to
add new commands. Also, instead of permanently adding rarely used
code (for instance hardware test utilities) to the monitor, you can
load and run it dynamically.


Status:
=======

In general, all boards for which a configuration option exists in the
50
Makefile have been tested to some extent and can be considered
W
wdenk 已提交
51 52
"working". In fact, many of them are used in production systems.

53
In case of problems see the CHANGELOG and CREDITS files to find out
54 55
who contributed the specific port. The MAINTAINERS file lists board
maintainers.
W
wdenk 已提交
56 57 58 59 60


Where to get help:
==================

61 62 63 64
In case you have questions about, problems with or contributions for
U-Boot you should send a message to the U-Boot mailing list at
<u-boot-users@lists.sourceforge.net>. There is also an archive of
previous traffic on the mailing list - please search the archive
W
wdenk 已提交
65 66 67 68
before asking FAQ's. Please see
http://lists.sourceforge.net/lists/listinfo/u-boot-users/


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
Where to get source code:
=========================

The U-Boot source code is maintained in the git repository at
git://www.denx.de/git/u-boot.git ; you can browse it online at
http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary

The "snapshot" links on this page allow you to download tarballs of
any version you might be interested in. Ofifcial releases are also
available for FTP download from the ftp://ftp.denx.de/pub/u-boot/
directory.

Pre-build (and tested) images are available from
ftp://ftp.denx.de/pub/u-boot/images/


W
wdenk 已提交
85 86 87 88
Where we come from:
===================

- start from 8xxrom sources
89
- create PPCBoot project (http://sourceforge.net/projects/ppcboot)
W
wdenk 已提交
90 91 92 93 94 95 96 97
- clean up code
- make it easier to add custom boards
- make it possible to add other [PowerPC] CPUs
- extend functions, especially:
  * Provide extended interface to Linux boot loader
  * S-Record download
  * network boot
  * PCMCIA / CompactFLash / ATA disk / SCSI ... boot
98
- create ARMBoot project (http://sourceforge.net/projects/armboot)
W
wdenk 已提交
99
- add other CPU families (starting with ARM)
100
- create U-Boot project (http://sourceforge.net/projects/u-boot)
101
- current project page: see http://www.denx.de/wiki/UBoot
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


Names and Spelling:
===================

The "official" name of this project is "Das U-Boot". The spelling
"U-Boot" shall be used in all written text (documentation, comments
in source files etc.). Example:

	This is the README file for the U-Boot project.

File names etc. shall be based on the string "u-boot". Examples:

	include/asm-ppc/u-boot.h

	#include <asm/u-boot.h>

Variable names, preprocessor constants etc. shall be either based on
the string "u_boot" or on "U_BOOT". Example:

	U_BOOT_VERSION		u_boot_logo
	IH_OS_U_BOOT		u_boot_hush_start
W
wdenk 已提交
124 125


W
wdenk 已提交
126 127 128 129 130 131 132 133 134 135 136 137
Versioning:
===========

U-Boot uses a 3 level version number containing a version, a
sub-version, and a patchlevel: "U-Boot-2.34.5" means version "2",
sub-version "34", and patchlevel "4".

The patchlevel is used to indicate certain stages of development
between released versions, i. e. officially released versions of
U-Boot will always have a patchlevel of "0".


W
wdenk 已提交
138 139 140
Directory Hierarchy:
====================

W
wdenk 已提交
141 142
- board		Board dependent files
- common	Misc architecture independent functions
W
wdenk 已提交
143
- cpu		CPU specific files
W
wdenk 已提交
144
  - 74xx_7xx	Files specific to Freescale MPC74xx and 7xx CPUs
W
wdenk 已提交
145 146
  - arm720t	Files specific to ARM 720 CPUs
  - arm920t	Files specific to ARM 920 CPUs
W
wdenk 已提交
147
    - at91rm9200 Files specific to Atmel AT91RM9200 CPU
W
wdenk 已提交
148
    - imx	Files specific to Freescale MC9328 i.MX CPUs
W
wdenk 已提交
149
    - s3c24x0	Files specific to Samsung S3C24X0 CPUs
W
wdenk 已提交
150 151
  - arm925t	Files specific to ARM 925 CPUs
  - arm926ejs	Files specific to ARM 926 CPUs
152
  - arm1136	Files specific to ARM 1136 CPUs
153
  - at32ap	Files specific to Atmel AVR32 AP CPUs
W
wdenk 已提交
154 155
  - i386	Files specific to i386 CPUs
  - ixp		Files specific to Intel XScale IXP CPUs
W
wdenk 已提交
156
  - mcf52x2	Files specific to Freescale ColdFire MCF52x2 CPUs
157
  - mcf5227x	Files specific to Freescale ColdFire MCF5227x CPUs
158
  - mcf532x	Files specific to Freescale ColdFire MCF5329 CPUs
159
  - mcf5445x	Files specific to Freescale ColdFire MCF5445x CPUs
160
  - mcf547x_8x	Files specific to Freescale ColdFire MCF547x_8x CPUs
W
wdenk 已提交
161
  - mips	Files specific to MIPS CPUs
W
wdenk 已提交
162 163 164 165 166 167 168
  - mpc5xx	Files specific to Freescale MPC5xx  CPUs
  - mpc5xxx	Files specific to Freescale MPC5xxx CPUs
  - mpc8xx	Files specific to Freescale MPC8xx  CPUs
  - mpc8220	Files specific to Freescale MPC8220 CPUs
  - mpc824x	Files specific to Freescale MPC824x CPUs
  - mpc8260	Files specific to Freescale MPC8260 CPUs
  - mpc85xx	Files specific to Freescale MPC85xx CPUs
W
wdenk 已提交
169
  - nios	Files specific to Altera NIOS CPUs
W
wdenk 已提交
170
  - nios2	Files specific to Altera Nios-II CPUs
W
Wolfgang Denk 已提交
171
  - ppc4xx	Files specific to AMCC PowerPC 4xx CPUs
W
wdenk 已提交
172 173 174
  - pxa		Files specific to Intel XScale PXA CPUs
  - s3c44b0	Files specific to Samsung S3C44B0 CPUs
  - sa1100	Files specific to Intel StrongARM SA1100 CPUs
W
wdenk 已提交
175 176
- disk		Code for disk drive partition handling
- doc		Documentation (don't expect too much)
W
wdenk 已提交
177
- drivers	Commonly used device drivers
W
wdenk 已提交
178 179 180
- dtt		Digital Thermometer and Thermostat drivers
- examples	Example code for standalone applications, etc.
- include	Header Files
W
wdenk 已提交
181
- lib_arm	Files generic to ARM	 architecture
W
Wolfgang Denk 已提交
182
- lib_avr32	Files generic to AVR32	 architecture
W
wdenk 已提交
183 184 185 186 187 188
- lib_generic	Files generic to all	 architectures
- lib_i386	Files generic to i386	 architecture
- lib_m68k	Files generic to m68k	 architecture
- lib_mips	Files generic to MIPS	 architecture
- lib_nios	Files generic to NIOS	 architecture
- lib_ppc	Files generic to PowerPC architecture
189
- libfdt	Library files to support flattened device trees
W
wdenk 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
- net		Networking code
- post		Power On Self Test
- rtc		Real Time Clock drivers
- tools		Tools to build S-Record or U-Boot images, etc.

Software Configuration:
=======================

Configuration is usually done using C preprocessor defines; the
rationale behind that is to avoid dead code whenever possible.

There are two classes of configuration variables:

* Configuration _OPTIONS_:
  These are selectable by the user and have names beginning with
  "CONFIG_".

* Configuration _SETTINGS_:
  These depend on the hardware etc. and should not be meddled with if
  you don't know what you're doing; they have names beginning with
  "CFG_".

Later we will add a configuration tool - probably similar to or even
identical to what's used for the Linux kernel. Right now, we have to
do the configuration by hand, which means creating some symbolic
links and editing some configuration files. We use the TQM8xxL boards
as an example here.


Selection of Processor Architecture and Board Type:
---------------------------------------------------

For all supported boards there are ready-to-use default
configurations available; just type "make <board_name>_config".

Example: For a TQM823L module type:

	cd u-boot
	make TQM823L_config

For the Cogent platform, you need to specify the cpu type as well;
e.g. "make cogent_mpc8xx_config". And also configure the cogent
directory according to the instructions in cogent/README.


Configuration Options:
----------------------

Configuration depends on the combination of board and CPU type; all
such information is kept in a configuration file
"include/configs/<board_name>.h".

Example: For a TQM823L module, all configuration settings are in
"include/configs/TQM823L.h".


W
wdenk 已提交
246 247 248 249 250
Many of the options are named exactly as the corresponding Linux
kernel configuration options. The intention is to make it easier to
build a config tool - later.


W
wdenk 已提交
251 252
The following options need to be configured:

253 254 255
- CPU Type:	Define exactly one, e.g. CONFIG_MPC85XX.

- Board Type:	Define exactly one, e.g. CONFIG_MPC8540ADS.
256 257

- CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
258
		Define exactly one, e.g. CONFIG_ATSTK1002
W
wdenk 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

- CPU Module Type: (if CONFIG_COGENT is defined)
		Define exactly one of
		CONFIG_CMA286_60_OLD
--- FIXME --- not tested yet:
		CONFIG_CMA286_60, CONFIG_CMA286_21, CONFIG_CMA286_60P,
		CONFIG_CMA287_23, CONFIG_CMA287_50

- Motherboard Type: (if CONFIG_COGENT is defined)
		Define exactly one of
		CONFIG_CMA101, CONFIG_CMA102

- Motherboard I/O Modules: (if CONFIG_COGENT is defined)
		Define one or more of
		CONFIG_CMA302

- Motherboard Options: (if CONFIG_CMA101 or CONFIG_CMA102 are defined)
		Define one or more of
		CONFIG_LCD_HEARTBEAT	- update a character position on
					  the lcd display every second with
					  a "rotator" |\-/|\-/

W
wdenk 已提交
281 282 283 284
- Board flavour: (if CONFIG_MPC8260ADS is defined)
		CONFIG_ADSTYPE
		Possible values are:
			CFG_8260ADS	- original MPC8260ADS
285
			CFG_8266ADS	- MPC8266ADS
W
wdenk 已提交
286
			CFG_PQ2FADS	- PQ2FADS-ZU or PQ2FADS-VR
287
			CFG_8272ADS	- MPC8272ADS
W
wdenk 已提交
288

W
wdenk 已提交
289
- MPC824X Family Member (if CONFIG_MPC824X is defined)
W
wdenk 已提交
290 291
		Define exactly one of
		CONFIG_MPC8240, CONFIG_MPC8245
W
wdenk 已提交
292

293
- 8xx CPU Options: (if using an MPC8xx cpu)
W
wdenk 已提交
294 295
		CONFIG_8xx_GCLK_FREQ	- deprecated: CPU clock if
					  get_gclk_freq() cannot work
W
wdenk 已提交
296 297
					  e.g. if there is no 32KHz
					  reference PIT/RTC clock
W
wdenk 已提交
298 299
		CONFIG_8xx_OSCLK	- PLL input clock (either EXTCLK
					  or XTAL/EXTAL)
W
wdenk 已提交
300

W
wdenk 已提交
301 302 303 304
- 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
		CFG_8xx_CPUCLK_MIN
		CFG_8xx_CPUCLK_MAX
		CONFIG_8xx_CPUCLK_DEFAULT
305 306 307 308
			See doc/README.MPC866

		CFG_MEASURE_CPUCLK

W
wdenk 已提交
309 310 311 312 313
		Define this to measure the actual CPU clock instead
		of relying on the correctness of the configured
		values. Mostly useful for board bringup to make sure
		the PLL is locked at the intended frequency. Note
		that this requires a (stable) reference clock (32 kHz
W
wdenk 已提交
314
		RTC clock or CFG_8XX_XIN)
315

316 317 318 319 320 321 322 323
- Intel Monahans options:
		CFG_MONAHANS_RUN_MODE_OSC_RATIO

		Defines the Monahans run mode to oscillator
		ratio. Valid values are 8, 16, 24, 31. The core
		frequency is this value multiplied by 13 MHz.

		CFG_MONAHANS_TURBO_RUN_MODE_RATIO
W
Wolfgang Denk 已提交
324

325 326
		Defines the Monahans turbo mode to oscillator
		ratio. Valid values are 1 (default if undefined) and
W
Wolfgang Denk 已提交
327
		2. The core frequency as calculated above is multiplied
328
		by this value.
W
Wolfgang Denk 已提交
329

W
wdenk 已提交
330
- Linux Kernel Interface:
W
wdenk 已提交
331 332 333 334 335 336 337 338 339 340
		CONFIG_CLOCKS_IN_MHZ

		U-Boot stores all clock information in Hz
		internally. For binary compatibility with older Linux
		kernels (which expect the clocks passed in the
		bd_info data to be in MHz) the environment variable
		"clocks_in_mhz" can be defined so that U-Boot
		converts clock data to MHZ before passing it to the
		Linux kernel.
		When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
341
		"clocks_in_mhz=1" is automatically included in the
W
wdenk 已提交
342 343
		default environment.

W
wdenk 已提交
344 345 346 347 348 349
		CONFIG_MEMSIZE_IN_BYTES		[relevant for MIPS only]

		When transfering memsize parameter to linux, some versions
		expect it to be in bytes, others in MB.
		Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.

350
		CONFIG_OF_LIBFDT / CONFIG_OF_FLAT_TREE
351 352

		New kernel versions are expecting firmware settings to be
353 354 355 356 357 358
		passed using flattened device trees (based on open firmware
		concepts).

		CONFIG_OF_LIBFDT
		 * New libfdt-based support
		 * Adds the "fdt" command
359
		 * The bootm command automatically updates the fdt
360 361 362 363 364 365 366

		CONFIG_OF_FLAT_TREE
		 * Deprecated, see CONFIG_OF_LIBFDT
		 * Original ft_build.c-based support
		 * Automatically modifies the dft as part of the bootm command
		 * The environment variable "disable_of", when set,
		     disables this functionality.
367 368

		OF_CPU - The proper name of the cpus node.
K
Kumar Gala 已提交
369
		OF_SOC - The proper name of the soc node.
370
		OF_TBCLK - The timebase frequency.
K
Kumar Gala 已提交
371
		OF_STDOUT_PATH - The path to the console device
372

373 374
		boards with QUICC Engines require OF_QE to set UCC mac addresses

375 376
		CONFIG_OF_HAS_BD_T

377 378 379 380
		 * CONFIG_OF_LIBFDT - enables the "fdt bd_t" command
		 * CONFIG_OF_FLAT_TREE - The resulting flat device tree
		     will have a copy of the bd_t.  Space should be
		     pre-allocated in the dts for the bd_t.
381 382

		CONFIG_OF_HAS_UBOOT_ENV
383

384
		 * CONFIG_OF_LIBFDT - enables the "fdt env" command
385 386
		 * CONFIG_OF_FLAT_TREE - The resulting flat device tree
		     will have a copy of u-boot's environment variables
387

388 389 390 391
		CONFIG_OF_BOARD_SETUP

		Board code has addition modification that it wants to make
		to the flat device tree before handing it off to the kernel
392

393 394 395 396 397
		CONFIG_OF_BOOT_CPU

		This define fills in the correct boot cpu in the boot
		param header, the default value is zero if undefined.

W
wdenk 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
- Serial Ports:
		CFG_PL010_SERIAL

		Define this if you want support for Amba PrimeCell PL010 UARTs.

		CFG_PL011_SERIAL

		Define this if you want support for Amba PrimeCell PL011 UARTs.

		CONFIG_PL011_CLOCK

		If you have Amba PrimeCell PL011 UARTs, set this variable to
		the clock speed of the UARTs.

		CONFIG_PL01x_PORTS

		If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
		define this to a list of base addresses for each (supported)
		port. See e.g. include/configs/versatile.h


W
wdenk 已提交
419
- Console Interface:
W
wdenk 已提交
420 421 422 423
		Depending on board, define exactly one serial port
		(like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
		CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
		console by defining CONFIG_8xx_CONS_NONE
W
wdenk 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

		Note: if CONFIG_8xx_CONS_NONE is defined, the serial
		port routines must be defined elsewhere
		(i.e. serial_init(), serial_getc(), ...)

		CONFIG_CFB_CONSOLE
		Enables console device for a color framebuffer. Needs following
		defines (cf. smiLynxEM, i8042, board/eltec/bab7xx)
			VIDEO_FB_LITTLE_ENDIAN	graphic memory organisation
						(default big endian)
			VIDEO_HW_RECTFILL	graphic chip supports
						rectangle fill
						(cf. smiLynxEM)
			VIDEO_HW_BITBLT		graphic chip supports
						bit-blit (cf. smiLynxEM)
			VIDEO_VISIBLE_COLS	visible pixel columns
						(cols=pitch)
W
wdenk 已提交
441 442
			VIDEO_VISIBLE_ROWS	visible pixel rows
			VIDEO_PIXEL_SIZE	bytes per pixel
W
wdenk 已提交
443 444
			VIDEO_DATA_FORMAT	graphic data format
						(0-5, cf. cfb_console.c)
W
wdenk 已提交
445
			VIDEO_FB_ADRS		framebuffer address
W
wdenk 已提交
446 447 448 449 450 451 452 453 454 455 456 457
			VIDEO_KBD_INIT_FCT	keyboard int fct
						(i.e. i8042_kbd_init())
			VIDEO_TSTC_FCT		test char fct
						(i.e. i8042_tstc)
			VIDEO_GETC_FCT		get char fct
						(i.e. i8042_getc)
			CONFIG_CONSOLE_CURSOR	cursor drawing on/off
						(requires blink timer
						cf. i8042.c)
			CFG_CONSOLE_BLINK_COUNT blink interval (cf. i8042.c)
			CONFIG_CONSOLE_TIME	display time/date info in
						upper right corner
458
						(requires CONFIG_CMD_DATE)
W
wdenk 已提交
459 460
			CONFIG_VIDEO_LOGO	display Linux logo in
						upper left corner
461 462 463
			CONFIG_VIDEO_BMP_LOGO	use bmp_logo.h instead of
						linux_logo.h for logo.
						Requires CONFIG_VIDEO_LOGO
W
wdenk 已提交
464 465 466 467
			CONFIG_CONSOLE_EXTRA_INFO
						addional board info beside
						the logo

W
wdenk 已提交
468 469 470
		When CONFIG_CFB_CONSOLE is defined, video console is
		default i/o. Serial console can be forced with
		environment 'console=serial'.
W
wdenk 已提交
471

W
wdenk 已提交
472 473 474 475
		When CONFIG_SILENT_CONSOLE is defined, all console
		messages (by U-Boot and Linux!) can be silenced with
		the "silent" environment variable. See
		doc/README.silent for more information.
W
wdenk 已提交
476

W
wdenk 已提交
477 478 479 480
- Console Baudrate:
		CONFIG_BAUDRATE - in bps
		Select one of the baudrates listed in
		CFG_BAUDRATE_TABLE, see below.
W
wdenk 已提交
481
		CFG_BRGCLK_PRESCALE, baudrate prescale
W
wdenk 已提交
482 483 484 485 486 487 488 489 490 491

- Interrupt driven serial port input:
		CONFIG_SERIAL_SOFTWARE_FIFO

		PPC405GP only.
		Use an interrupt handler for receiving data on the
		serial port. It also enables using hardware handshake
		(RTS/CTS) and UART's built-in FIFO. Set the number of
		bytes the interrupt driven input buffer should have.

W
wdenk 已提交
492 493
		Leave undefined to disable this feature, including
		disable the buffer and hardware handshake.
W
wdenk 已提交
494

S
stroese 已提交
495 496 497
- Console UART Number:
		CONFIG_UART1_CONSOLE

W
Wolfgang Denk 已提交
498
		AMCC PPC4xx only.
S
stroese 已提交
499 500 501
		If defined internal UART1 (and not UART0) is used
		as default U-Boot console.

W
wdenk 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
- Boot Delay:	CONFIG_BOOTDELAY - in seconds
		Delay before automatically booting the default image;
		set to -1 to disable autoboot.

		See doc/README.autoboot for these options that
		work with CONFIG_BOOTDELAY. None are required.
		CONFIG_BOOT_RETRY_TIME
		CONFIG_BOOT_RETRY_MIN
		CONFIG_AUTOBOOT_KEYED
		CONFIG_AUTOBOOT_PROMPT
		CONFIG_AUTOBOOT_DELAY_STR
		CONFIG_AUTOBOOT_STOP_STR
		CONFIG_AUTOBOOT_DELAY_STR2
		CONFIG_AUTOBOOT_STOP_STR2
		CONFIG_ZERO_BOOTDELAY_CHECK
		CONFIG_RESET_TO_RETRY

- Autoboot Command:
		CONFIG_BOOTCOMMAND
		Only needed when CONFIG_BOOTDELAY is enabled;
		define a command string that is automatically executed
		when no character is read on the console interface
		within "Boot Delay" after reset.

		CONFIG_BOOTARGS
W
wdenk 已提交
527 528 529
		This can be used to pass arguments to the bootm
		command. The value of CONFIG_BOOTARGS goes into the
		environment value "bootargs".
W
wdenk 已提交
530 531

		CONFIG_RAMBOOT and CONFIG_NFSBOOT
W
wdenk 已提交
532 533 534 535
		The value of these goes into the environment as
		"ramboot" and "nfsboot" respectively, and can be used
		as a convenience, when switching between booting from
		ram and nfs.
W
wdenk 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

- Pre-Boot Commands:
		CONFIG_PREBOOT

		When this option is #defined, the existence of the
		environment variable "preboot" will be checked
		immediately before starting the CONFIG_BOOTDELAY
		countdown and/or running the auto-boot command resp.
		entering interactive mode.

		This feature is especially useful when "preboot" is
		automatically generated or modified. For an example
		see the LWMON board specific code: here "preboot" is
		modified when the user holds down a certain
		combination of keys on the (special) keyboard when
		booting the systems

- Serial Download Echo Mode:
		CONFIG_LOADS_ECHO
		If defined to 1, all characters received during a
		serial download (using the "loads" command) are
		echoed back. This might be needed by some terminal
		emulations (like "cu"), but may as well just take
		time on others. This setting #define's the initial
		value of the "loads_echo" environment variable.

562
- Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
W
wdenk 已提交
563 564 565 566 567
		CONFIG_KGDB_BAUDRATE
		Select one of the baudrates listed in
		CFG_BAUDRATE_TABLE, see below.

- Monitor Functions:
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
		Monitor commands can be included or excluded
		from the build by using the #include files
		"config_cmd_all.h" and #undef'ing unwanted
		commands, or using "config_cmd_default.h"
		and augmenting with additional #define's
		for wanted commands.

		The default command configuration includes all commands
		except those marked below with a "*".

		CONFIG_CMD_ASKENV	* ask for env variable
		CONFIG_CMD_AUTOSCRIPT	  Autoscript Support
		CONFIG_CMD_BDI		  bdinfo
		CONFIG_CMD_BEDBUG	* Include BedBug Debugger
		CONFIG_CMD_BMP		* BMP support
		CONFIG_CMD_BSP		* Board specific commands
		CONFIG_CMD_BOOTD	  bootd
		CONFIG_CMD_CACHE	* icache, dcache
		CONFIG_CMD_CONSOLE	  coninfo
		CONFIG_CMD_DATE		* support for RTC, date/time...
		CONFIG_CMD_DHCP		* DHCP support
		CONFIG_CMD_DIAG		* Diagnostics
		CONFIG_CMD_DOC		* Disk-On-Chip Support
		CONFIG_CMD_DTT		* Digital Therm and Thermostat
		CONFIG_CMD_ECHO		  echo arguments
		CONFIG_CMD_EEPROM	* EEPROM read/write support
		CONFIG_CMD_ELF		* bootelf, bootvx
		CONFIG_CMD_ENV		  saveenv
		CONFIG_CMD_FDC		* Floppy Disk Support
		CONFIG_CMD_FAT		* FAT partition support
		CONFIG_CMD_FDOS		* Dos diskette Support
		CONFIG_CMD_FLASH	  flinfo, erase, protect
		CONFIG_CMD_FPGA		  FPGA device initialization support
		CONFIG_CMD_HWFLOW	* RTS/CTS hw flow control
		CONFIG_CMD_I2C		* I2C serial bus support
		CONFIG_CMD_IDE		* IDE harddisk support
		CONFIG_CMD_IMI		  iminfo
		CONFIG_CMD_IMLS		  List all found images
		CONFIG_CMD_IMMAP	* IMMR dump support
		CONFIG_CMD_IRQ		* irqinfo
		CONFIG_CMD_ITEST	  Integer/string test of 2 values
		CONFIG_CMD_JFFS2	* JFFS2 Support
		CONFIG_CMD_KGDB		* kgdb
		CONFIG_CMD_LOADB	  loadb
		CONFIG_CMD_LOADS	  loads
		CONFIG_CMD_MEMORY	  md, mm, nm, mw, cp, cmp, crc, base,
					  loop, loopw, mtest
		CONFIG_CMD_MISC		  Misc functions like sleep etc
		CONFIG_CMD_MMC		* MMC memory mapped support
		CONFIG_CMD_MII		* MII utility commands
		CONFIG_CMD_NAND		* NAND support
		CONFIG_CMD_NET		  bootp, tftpboot, rarpboot
		CONFIG_CMD_PCI		* pciinfo
		CONFIG_CMD_PCMCIA		* PCMCIA support
		CONFIG_CMD_PING		* send ICMP ECHO_REQUEST to network
					  host
		CONFIG_CMD_PORTIO	* Port I/O
		CONFIG_CMD_REGINFO	* Register dump
		CONFIG_CMD_RUN		  run command in env variable
		CONFIG_CMD_SAVES	* save S record dump
		CONFIG_CMD_SCSI		* SCSI Support
		CONFIG_CMD_SDRAM	* print SDRAM configuration information
					  (requires CONFIG_CMD_I2C)
		CONFIG_CMD_SETGETDCR	  Support for DCR Register access
					  (4xx only)
		CONFIG_CMD_SPI		* SPI serial bus support
		CONFIG_CMD_USB		* USB support
		CONFIG_CMD_VFD		* VFD support (TRAB)
		CONFIG_CMD_BSP		* Board SPecific functions
		CONFIG_CMD_CDP		* Cisco Discover Protocol support
		CONFIG_CMD_FSL		* Microblaze FSL support

W
wdenk 已提交
640 641 642 643

		EXAMPLE: If you want all functions except of network
		support you can write:

644 645
		#include "config_cmd_all.h"
		#undef CONFIG_CMD_NET
W
wdenk 已提交
646

647 648
	Other Commands:
		fdt (flattened device tree) command: CONFIG_OF_LIBFDT
W
wdenk 已提交
649 650

	Note:	Don't enable the "icache" and "dcache" commands
651
		(configuration option CONFIG_CMD_CACHE) unless you know
W
wdenk 已提交
652 653 654 655 656 657
		what you (and your U-Boot users) are doing. Data
		cache cannot be enabled on systems like the 8xx or
		8260 (where accesses to the IMMR region must be
		uncached), and it cannot be disabled on all other
		systems where we (mis-) use the data cache to hold an
		initial stack and some data.
W
wdenk 已提交
658 659 660 661 662 663 664


		XXX - this list needs to get updated!

- Watchdog:
		CONFIG_WATCHDOG
		If this variable is defined, it enables watchdog
W
wdenk 已提交
665
		support. There must be support in the platform specific
W
wdenk 已提交
666 667 668 669
		code for a watchdog. For the 8xx and 8260 CPUs, the
		SIU Watchdog feature is enabled in the SYPCR
		register.

670 671 672 673 674 675 676
- U-Boot Version:
		CONFIG_VERSION_VARIABLE
		If this variable is defined, an environment variable
		named "ver" is created by U-Boot showing the U-Boot
		version as printed by the "version" command.
		This variable is readonly.

W
wdenk 已提交
677 678
- Real-Time Clock:

679
		When CONFIG_CMD_DATE is selected, the type of the RTC
W
wdenk 已提交
680 681 682 683 684 685
		has to be selected, too. Define exactly one of the
		following options:

		CONFIG_RTC_MPC8xx	- use internal RTC of MPC8xx
		CONFIG_RTC_PCF8563	- use Philips PCF8563 RTC
		CONFIG_RTC_MC146818	- use MC146818 RTC
W
wdenk 已提交
686
		CONFIG_RTC_DS1307	- use Maxim, Inc. DS1307 RTC
W
wdenk 已提交
687
		CONFIG_RTC_DS1337	- use Maxim, Inc. DS1337 RTC
W
wdenk 已提交
688
		CONFIG_RTC_DS1338	- use Maxim, Inc. DS1338 RTC
W
wdenk 已提交
689
		CONFIG_RTC_DS164x	- use Dallas DS164x RTC
T
Tor Krill 已提交
690
		CONFIG_RTC_ISL1208	- use Intersil ISL1208 RTC
W
wdenk 已提交
691
		CONFIG_RTC_MAX6900	- use Maxim, Inc. MAX6900 RTC
W
wdenk 已提交
692

W
wdenk 已提交
693 694 695
		Note that if the RTC uses I2C, then the I2C interface
		must also be configured. See I2C Support, below.

W
wdenk 已提交
696 697
- Timestamp Support:

W
wdenk 已提交
698 699 700
		When CONFIG_TIMESTAMP is selected, the timestamp
		(date and time) of an image is printed by image
		commands like bootm or iminfo. This option is
701
		automatically enabled when you select CONFIG_CMD_DATE .
W
wdenk 已提交
702 703 704 705 706

- Partition Support:
		CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
		and/or CONFIG_ISO_PARTITION

707 708 709
		If IDE or SCSI support is enabled (CONFIG_CMD_IDE or
		CONFIG_CMD_SCSI) you must configure support for at
		least one partition type as well.
W
wdenk 已提交
710 711

- IDE Reset method:
W
wdenk 已提交
712 713
		CONFIG_IDE_RESET_ROUTINE - this is defined in several
		board configurations files but used nowhere!
W
wdenk 已提交
714

W
wdenk 已提交
715 716 717 718
		CONFIG_IDE_RESET - is this is defined, IDE Reset will
		be performed by calling the function
			ide_set_reset(int reset)
		which has to be defined in a board specific file
W
wdenk 已提交
719 720 721 722 723 724

- ATAPI Support:
		CONFIG_ATAPI

		Set this to enable ATAPI support.

W
wdenk 已提交
725 726 727 728 729 730 731 732 733 734 735 736
- LBA48 Support
		CONFIG_LBA48

		Set this to enable support for disks larger than 137GB
		Also look at CFG_64BIT_LBA ,CFG_64BIT_VSPRINTF and CFG_64BIT_STRTOUL
		Whithout these , LBA48 support uses 32bit variables and will 'only'
		support disks up to 2.1TB.

		CFG_64BIT_LBA:
			When enabled, makes the IDE subsystem use 64bit sector addresses.
			Default is 32bit.

W
wdenk 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749
- SCSI Support:
		At the moment only there is only support for the
		SYM53C8XX SCSI controller; define
		CONFIG_SCSI_SYM53C8XX to enable it.

		CFG_SCSI_MAX_LUN [8], CFG_SCSI_MAX_SCSI_ID [7] and
		CFG_SCSI_MAX_DEVICE [CFG_SCSI_MAX_SCSI_ID *
		CFG_SCSI_MAX_LUN] can be adjusted to define the
		maximum numbers of LUNs, SCSI ID's and target
		devices.
		CFG_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)

- NETWORK Support (PCI):
750 751
		CONFIG_E1000
		Support for Intel 8254x gigabit chips.
S
stroese 已提交
752

W
wdenk 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		CONFIG_EEPRO100
		Support for Intel 82557/82559/82559ER chips.
		Optional CONFIG_EEPRO100_SROM_WRITE enables eeprom
		write routine for first time initialisation.

		CONFIG_TULIP
		Support for Digital 2114x chips.
		Optional CONFIG_TULIP_SELECT_MEDIA for board specific
		modem chip initialisation (KS8761/QS6611).

		CONFIG_NATSEMI
		Support for National dp83815 chips.

		CONFIG_NS8382X
		Support for National dp8382[01] gigabit chips.

W
wdenk 已提交
769 770 771 772 773 774 775 776 777 778 779 780
- NETWORK Support (other):

		CONFIG_DRIVER_LAN91C96
		Support for SMSC's LAN91C96 chips.

			CONFIG_LAN91C96_BASE
			Define this to hold the physical address
			of the LAN91C96's I/O space

			CONFIG_LAN91C96_USE_32_BIT
			Define this to enable 32 bit addressing

W
wdenk 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794
		CONFIG_DRIVER_SMC91111
		Support for SMSC's LAN91C111 chip

			CONFIG_SMC91111_BASE
			Define this to hold the physical address
			of the device (I/O space)

			CONFIG_SMC_USE_32_BIT
			Define this if data bus is 32 bits

			CONFIG_SMC_USE_IOFUNCS
			Define this to use i/o functions instead of macros
			(some hardware wont work with macros)

W
wdenk 已提交
795 796
- USB Support:
		At the moment only the UHCI host controller is
W
wdenk 已提交
797
		supported (PIP405, MIP405, MPC5200); define
W
wdenk 已提交
798 799
		CONFIG_USB_UHCI to enable it.
		define CONFIG_USB_KEYBOARD to enable the USB Keyboard
W
wdenk 已提交
800
		and define CONFIG_USB_STORAGE to enable the USB
W
wdenk 已提交
801 802 803 804
		storage devices.
		Note:
		Supported are USB Keyboards and USB Floppy drives
		(TEAC FD-05PUB).
W
wdenk 已提交
805 806 807 808 809 810
		MPC5200 USB requires additional defines:
			CONFIG_USB_CLOCK
				for 528 MHz Clock: 0x0001bbbb
			CONFIG_USB_CONFIG
				for differential drivers: 0x00001000
				for single ended drivers: 0x00005000
Z
Zhang Wei 已提交
811 812 813
			CFG_USB_EVENT_POLL
				May be defined to allow interrupt polling
				instead of using asynchronous interrupts
W
wdenk 已提交
814

W
Wolfgang Denk 已提交
815 816 817 818 819 820 821
- USB Device:
		Define the below if you wish to use the USB console.
		Once firmware is rebuilt from a serial console issue the
		command "setenv stdin usbtty; setenv stdout usbtty" and
		attach your usb cable. The Unix command "dmesg" should print
		it has found a new device. The environment variable usbtty
		can be set to gserial or cdc_acm to enable your device to
W
Wolfgang Denk 已提交
822
		appear to a USB host as a Linux gserial device or a
W
Wolfgang Denk 已提交
823 824 825 826 827 828 829
		Common Device Class Abstract Control Model serial device.
		If you select usbtty = gserial you should be able to enumerate
		a Linux host by
		# modprobe usbserial vendor=0xVendorID product=0xProductID
		else if using cdc_acm, simply setting the environment
		variable usbtty to be cdc_acm should suffice. The following
		might be defined in YourBoardName.h
W
Wolfgang Denk 已提交
830

W
Wolfgang Denk 已提交
831 832 833 834 835 836
			CONFIG_USB_DEVICE
			Define this to build a UDC device

			CONFIG_USB_TTY
			Define this to have a tty type of device available to
			talk to the UDC device
W
Wolfgang Denk 已提交
837

W
Wolfgang Denk 已提交
838 839 840 841 842 843 844
			CFG_CONSOLE_IS_IN_ENV
			Define this if you want stdin, stdout &/or stderr to
			be set to usbtty.

			mpc8xx:
				CFG_USB_EXTC_CLK 0xBLAH
				Derive USB clock from external clock "blah"
W
Wolfgang Denk 已提交
845 846
				- CFG_USB_EXTC_CLK 0x02

W
Wolfgang Denk 已提交
847 848 849 850
				CFG_USB_BRG_CLK 0xBLAH
				Derive USB clock from brgclk
				- CFG_USB_BRG_CLK 0x04

W
Wolfgang Denk 已提交
851
		If you have a USB-IF assigned VendorID then you may wish to
W
Wolfgang Denk 已提交
852
		define your own vendor specific values either in BoardName.h
W
Wolfgang Denk 已提交
853
		or directly in usbd_vendor_info.h. If you don't define
W
Wolfgang Denk 已提交
854 855 856 857 858 859 860
		CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
		CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
		should pretend to be a Linux device to it's target host.

			CONFIG_USBD_MANUFACTURER
			Define this string as the name of your company for
			- CONFIG_USBD_MANUFACTURER "my company"
W
Wolfgang Denk 已提交
861

W
Wolfgang Denk 已提交
862 863 864 865 866 867 868 869 870
			CONFIG_USBD_PRODUCT_NAME
			Define this string as the name of your product
			- CONFIG_USBD_PRODUCT_NAME "acme usb device"

			CONFIG_USBD_VENDORID
			Define this as your assigned Vendor ID from the USB
			Implementors Forum. This *must* be a genuine Vendor ID
			to avoid polluting the USB namespace.
			- CONFIG_USBD_VENDORID 0xFFFF
W
Wolfgang Denk 已提交
871

W
Wolfgang Denk 已提交
872 873 874 875
			CONFIG_USBD_PRODUCTID
			Define this as the unique Product ID
			for your device
			- CONFIG_USBD_PRODUCTID 0xFFFF
W
wdenk 已提交
876

W
wdenk 已提交
877

878
- MMC Support:
W
wdenk 已提交
879 880 881
		The MMC controller on the Intel PXA is supported. To
		enable this define CONFIG_MMC. The MMC can be
		accessed from the boot prompt by mapping the device
882
		to physical memory similar to flash. Command line is
883 884
		enabled with CONFIG_CMD_MMC. The MMC driver also works with
		the FAT fs. This is enabled with CONFIG_CMD_FAT.
885

W
wdenk 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899
- Journaling Flash filesystem support:
		CONFIG_JFFS2_NAND, CONFIG_JFFS2_NAND_OFF, CONFIG_JFFS2_NAND_SIZE,
		CONFIG_JFFS2_NAND_DEV
		Define these for a default partition on a NAND device

		CFG_JFFS2_FIRST_SECTOR,
		CFG_JFFS2_FIRST_BANK, CFG_JFFS2_NUM_BANKS
		Define these for a default partition on a NOR device

		CFG_JFFS_CUSTOM_PART
		Define this to create an own partition. You have to provide a
		function struct part_info* jffs2_part_info(int part_num)

		If you define only one JFFS2 partition you may also want to
W
wdenk 已提交
900
		#define CFG_JFFS_SINGLE_PART	1
W
wdenk 已提交
901 902 903
		to disable the command chpart. This is the default when you
		have not defined a custom partition

W
wdenk 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
- Keyboard Support:
		CONFIG_ISA_KEYBOARD

		Define this to enable standard (PC-Style) keyboard
		support

		CONFIG_I8042_KBD
		Standard PC keyboard driver with US (is default) and
		GERMAN key layout (switch via environment 'keymap=de') support.
		Export function i8042_kbd_init, i8042_tstc and i8042_getc
		for cfb_console. Supports cursor blinking.

- Video support:
		CONFIG_VIDEO

		Define this to enable video support (for output to
		video).

		CONFIG_VIDEO_CT69000

		Enable Chips & Technologies 69000 Video chip

		CONFIG_VIDEO_SMI_LYNXEM
W
wdenk 已提交
927
		Enable Silicon Motion SMI 712/710/810 Video chip. The
W
wdenk 已提交
928 929 930 931
		video output is selected via environment 'videoout'
		(1 = LCD and 2 = CRT). If videoout is undefined, CRT is
		assumed.

W
wdenk 已提交
932 933
		For the CT69000 and SMI_LYNXEM drivers, videomode is
		selected via environment 'videomode'. Two diferent ways
W
wdenk 已提交
934 935
		are possible:
		- "videomode=num"   'num' is a standard LiLo mode numbers.
W
wdenk 已提交
936
		Following standard modes are supported	(* is default):
W
wdenk 已提交
937 938 939 940 941 942 943 944

		      Colors	640x480 800x600 1024x768 1152x864 1280x1024
		-------------+---------------------------------------------
		      8 bits |	0x301*	0x303	 0x305	  0x161	    0x307
		     15 bits |	0x310	0x313	 0x316	  0x162	    0x319
		     16 bits |	0x311	0x314	 0x317	  0x163	    0x31A
		     24 bits |	0x312	0x315	 0x318	    ?	    0x31B
		-------------+---------------------------------------------
W
wdenk 已提交
945 946
		(i.e. setenv videomode 317; saveenv; reset;)

W
wdenk 已提交
947
		- "videomode=bootargs" all the video parameters are parsed
948
		from the bootargs. (See drivers/video/videomodes.c)
W
wdenk 已提交
949 950


951
		CONFIG_VIDEO_SED13806
W
wdenk 已提交
952
		Enable Epson SED13806 driver. This driver supports 8bpp
953 954 955
		and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
		or CONFIG_VIDEO_SED13806_16BPP

956
- Keyboard Support:
W
wdenk 已提交
957
		CONFIG_KEYBOARD
958

W
wdenk 已提交
959 960 961 962
		Define this to enable a custom keyboard support.
		This simply calls drv_keyboard_init() which must be
		defined in your board-specific files.
		The only board using this so far is RBC823.
963

W
wdenk 已提交
964 965 966 967 968 969
- LCD Support:	CONFIG_LCD

		Define this to enable LCD support (for output to LCD
		display); also select one of the supported displays
		by defining one of these:

W
wdenk 已提交
970
		CONFIG_NEC_NL6448AC33:
W
wdenk 已提交
971

W
wdenk 已提交
972
			NEC NL6448AC33-18. Active, color, single scan.
W
wdenk 已提交
973

W
wdenk 已提交
974
		CONFIG_NEC_NL6448BC20
W
wdenk 已提交
975

W
wdenk 已提交
976 977 978 979 980 981
			NEC NL6448BC20-08. 6.5", 640x480.
			Active, color, single scan.

		CONFIG_NEC_NL6448BC33_54

			NEC NL6448BC33-54. 10.4", 640x480.
W
wdenk 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			Active, color, single scan.

		CONFIG_SHARP_16x9

			Sharp 320x240. Active, color, single scan.
			It isn't 16x9, and I am not sure what it is.

		CONFIG_SHARP_LQ64D341

			Sharp LQ64D341 display, 640x480.
			Active, color, single scan.

		CONFIG_HLD1045

			HLD1045 display, 640x480.
			Active, color, single scan.

		CONFIG_OPTREX_BW

			Optrex	 CBL50840-2 NF-FW 99 22 M5
			or
			Hitachi	 LMG6912RPFC-00T
			or
			Hitachi	 SP14Q002

			320x240. Black & white.

		Normally display is black on white background; define
		CFG_WHITE_ON_BLACK to get it inverted.

W
wdenk 已提交
1012
- Splash Screen Support: CONFIG_SPLASH_SCREEN
1013

W
wdenk 已提交
1014 1015 1016
		If this option is set, the environment is checked for
		a variable "splashimage". If found, the usual display
		of logo, copyright and system information on the LCD
1017
		is suppressed and the BMP image at the address
W
wdenk 已提交
1018 1019 1020 1021
		specified in "splashimage" is loaded instead. The
		console is redirected to the "nulldev", too. This
		allows for a "silent" boot where a splash screen is
		loaded very quickly after power-on.
1022

S
Stefan Roese 已提交
1023 1024 1025 1026 1027 1028
- Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP

		If this option is set, additionally to standard BMP
		images, gzipped BMP images can be displayed via the
		splashscreen support or the bmp command.

W
wdenk 已提交
1029 1030 1031 1032 1033 1034 1035
- Compression support:
		CONFIG_BZIP2

		If this option is set, support for bzip2 compressed
		images is included. If not, only uncompressed and gzip
		compressed images are supported.

W
wdenk 已提交
1036 1037 1038
		NOTE: the bzip2 algorithm requires a lot of RAM, so
		the malloc area (as defined by CFG_MALLOC_LEN) should
		be at least 4MB.
1039

W
wdenk 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
- MII/PHY support:
		CONFIG_PHY_ADDR

		The address of PHY on MII bus.

		CONFIG_PHY_CLOCK_FREQ (ppc4xx)

		The clock frequency of the MII bus

		CONFIG_PHY_GIGE

		If this option is set, support for speed/duplex
		detection of Gigabit PHY is included.

		CONFIG_PHY_RESET_DELAY

		Some PHY like Intel LXT971A need extra delay after
		reset before any MII register access is possible.
		For such PHY, set this option to the usec delay
		required. (minimum 300usec for LXT971A)

		CONFIG_PHY_CMD_DELAY (ppc4xx)

		Some PHY like Intel LXT971A need extra delay after
		command issued before MII status register can be read

W
wdenk 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
- Ethernet address:
		CONFIG_ETHADDR
		CONFIG_ETH2ADDR
		CONFIG_ETH3ADDR

		Define a default value for ethernet address to use
		for the respective ethernet interface, in case this
		is not determined automatically.

- IP address:
		CONFIG_IPADDR

		Define a default value for the IP address to use for
		the default ethernet interface, in case this is not
		determined through e.g. bootp.

- Server IP address:
		CONFIG_SERVERIP

		Defines a default value for theIP address of a TFTP
		server to contact when using the "tftboot" command.

D
David Updegraff 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
- Multicast TFTP Mode:
		CONFIG_MCAST_TFTP

		Defines whether you want to support multicast TFTP as per
		rfc-2090; for example to work with atftp.  Lets lots of targets
		tftp down the same boot image concurrently.  Note: the ethernet
		driver in use must provide a function: mcast() to join/leave a
		multicast group.

		CONFIG_BOOTP_RANDOM_DELAY
W
wdenk 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
- BOOTP Recovery Mode:
		CONFIG_BOOTP_RANDOM_DELAY

		If you have many targets in a network that try to
		boot using BOOTP, you may want to avoid that all
		systems send out BOOTP requests at precisely the same
		moment (which would happen for instance at recovery
		from a power failure, when all systems will try to
		boot, thus flooding the BOOTP server. Defining
		CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
		inserted before sending out BOOTP requests. The
1109
		following delays are inserted then:
W
wdenk 已提交
1110 1111 1112 1113 1114 1115 1116

		1st BOOTP request:	delay 0 ... 1 sec
		2nd BOOTP request:	delay 0 ... 2 sec
		3rd BOOTP request:	delay 0 ... 4 sec
		4th and following
		BOOTP requests:		delay 0 ... 8 sec

1117
- DHCP Advanced Options:
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		You can fine tune the DHCP functionality by defining
		CONFIG_BOOTP_* symbols:

		CONFIG_BOOTP_SUBNETMASK
		CONFIG_BOOTP_GATEWAY
		CONFIG_BOOTP_HOSTNAME
		CONFIG_BOOTP_NISDOMAIN
		CONFIG_BOOTP_BOOTPATH
		CONFIG_BOOTP_BOOTFILESIZE
		CONFIG_BOOTP_DNS
		CONFIG_BOOTP_DNS2
		CONFIG_BOOTP_SEND_HOSTNAME
		CONFIG_BOOTP_NTPSERVER
		CONFIG_BOOTP_TIMEOFFSET
		CONFIG_BOOTP_VENDOREX
1133

W
Wilson Callan 已提交
1134 1135
		CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
		environment variable, not the BOOTP server.
1136 1137 1138 1139 1140 1141 1142 1143

		CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
		serverip from a DHCP server, it is possible that more
		than one DNS serverip is offered to the client.
		If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
		serverip will be stored in the additional environment
		variable "dnsip2". The first DNS serverip is always
		stored in the variable "dnsip", when CONFIG_BOOTP_DNS
1144
		is defined.
1145 1146 1147 1148

		CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
		to do a dynamic update of a DNS server. To do this, they
		need the hostname of the DHCP requester.
W
Wilson Callan 已提交
1149
		If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
1150 1151
		of the "hostname" environment variable is passed as
		option 12 to the DHCP server.
1152

1153
 - CDP Options:
W
wdenk 已提交
1154
		CONFIG_CDP_DEVICE_ID
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

		The device id used in CDP trigger frames.

		CONFIG_CDP_DEVICE_ID_PREFIX

		A two character string which is prefixed to the MAC address
		of the device.

		CONFIG_CDP_PORT_ID

		A printf format string which contains the ascii name of
		the port. Normally is set to "eth%d" which sets
		eth0 for the first ethernet, eth1 for the second etc.

		CONFIG_CDP_CAPABILITIES

		A 32bit integer which indicates the device capabilities;
		0x00000010 for a normal host which does not forwards.

		CONFIG_CDP_VERSION

		An ascii string containing the version of the software.

		CONFIG_CDP_PLATFORM

		An ascii string containing the name of the platform.

		CONFIG_CDP_TRIGGER

		A 32bit integer sent on the trigger.

		CONFIG_CDP_POWER_CONSUMPTION

		A 16bit integer containing the power consumption of the
		device in .1 of milliwatts.

		CONFIG_CDP_APPLIANCE_VLAN_TYPE

		A byte containing the id of the VLAN.

W
wdenk 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
- Status LED:	CONFIG_STATUS_LED

		Several configurations allow to display the current
		status using a LED. For instance, the LED will blink
		fast while running U-Boot code, stop blinking as
		soon as a reply to a BOOTP request was received, and
		start blinking slow once the Linux kernel is running
		(supported by a status LED driver in the Linux
		kernel). Defining CONFIG_STATUS_LED enables this
		feature in U-Boot.

- CAN Support:	CONFIG_CAN_DRIVER

		Defining CONFIG_CAN_DRIVER enables CAN driver support
		on those systems that support this (optional)
		feature, like the TQM8xxL modules.

- I2C Support:	CONFIG_HARD_I2C | CONFIG_SOFT_I2C

W
wdenk 已提交
1214
		These enable I2C serial bus commands. Defining either of
1215 1216
		(but not both of) CONFIG_HARD_I2C or CONFIG_SOFT_I2C will
		include the appropriate I2C driver for the selected cpu.
W
wdenk 已提交
1217

1218
		This will allow you to use i2c commands at the u-boot
1219
		command line (as long as you set CONFIG_CMD_I2C in
W
wdenk 已提交
1220 1221
		CONFIG_COMMANDS) and communicate with i2c based realtime
		clock chips. See common/cmd_i2c.c for a description of the
W
wdenk 已提交
1222
		command line interface.
W
wdenk 已提交
1223

B
Ben Warren 已提交
1224 1225 1226 1227 1228 1229
		CONFIG_I2C_CMD_TREE is a recommended option that places
		all I2C commands under a single 'i2c' root command.  The
		older 'imm', 'imd', 'iprobe' etc. commands are considered
		deprecated and may disappear in the future.

		CONFIG_HARD_I2C selects a hardware I2C controller.
W
wdenk 已提交
1230

1231
		CONFIG_SOFT_I2C configures u-boot to use a software (aka
W
wdenk 已提交
1232 1233
		bit-banging) driver instead of CPM or similar hardware
		support for I2C.
W
wdenk 已提交
1234

1235
		There are several other quantities that must also be
W
wdenk 已提交
1236
		defined when you define CONFIG_HARD_I2C or CONFIG_SOFT_I2C.
W
wdenk 已提交
1237

W
wdenk 已提交
1238
		In both cases you will need to define CFG_I2C_SPEED
1239 1240 1241 1242
		to be the frequency (in Hz) at which you wish your i2c bus
		to run and CFG_I2C_SLAVE to be the address of this node (ie
		the cpu's i2c node address).

W
wdenk 已提交
1243 1244 1245
		Now, the u-boot i2c code for the mpc8xx (cpu/mpc8xx/i2c.c)
		sets the cpu up as a master node and so its address should
		therefore be cleared to 0 (See, eg, MPC823e User's Manual
1246
		p.16-473). So, set CFG_I2C_SLAVE to 0.
W
wdenk 已提交
1247

1248
		That's all that's required for CONFIG_HARD_I2C.
W
wdenk 已提交
1249

W
wdenk 已提交
1250 1251 1252
		If you use the software i2c interface (CONFIG_SOFT_I2C)
		then the following macros need to be defined (examples are
		from include/configs/lwmon.h):
W
wdenk 已提交
1253 1254 1255

		I2C_INIT

W
wdenk 已提交
1256
		(Optional). Any commands necessary to enable the I2C
W
wdenk 已提交
1257
		controller or configure ports.
W
wdenk 已提交
1258

W
wdenk 已提交
1259
		eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |=	PB_SCL)
W
wdenk 已提交
1260

W
wdenk 已提交
1261 1262
		I2C_PORT

W
wdenk 已提交
1263 1264 1265
		(Only for MPC8260 CPU). The I/O port to use (the code
		assumes both bits are on the same port). Valid values
		are 0..3 for ports A..D.
W
wdenk 已提交
1266 1267 1268 1269 1270 1271 1272

		I2C_ACTIVE

		The code necessary to make the I2C data line active
		(driven).  If the data line is open collector, this
		define can be null.

W
wdenk 已提交
1273 1274
		eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |=  PB_SDA)

W
wdenk 已提交
1275 1276 1277 1278 1279 1280
		I2C_TRISTATE

		The code necessary to make the I2C data line tri-stated
		(inactive).  If the data line is open collector, this
		define can be null.

W
wdenk 已提交
1281 1282
		eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)

W
wdenk 已提交
1283 1284 1285 1286 1287
		I2C_READ

		Code that returns TRUE if the I2C data line is high,
		FALSE if it is low.

W
wdenk 已提交
1288 1289
		eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)

W
wdenk 已提交
1290 1291 1292 1293 1294
		I2C_SDA(bit)

		If <bit> is TRUE, sets the I2C data line high. If it
		is FALSE, it clears it (low).

W
wdenk 已提交
1295
		eg: #define I2C_SDA(bit) \
W
wdenk 已提交
1296
			if(bit) immr->im_cpm.cp_pbdat |=  PB_SDA; \
W
wdenk 已提交
1297
			else	immr->im_cpm.cp_pbdat &= ~PB_SDA
W
wdenk 已提交
1298

W
wdenk 已提交
1299 1300 1301 1302 1303
		I2C_SCL(bit)

		If <bit> is TRUE, sets the I2C clock line high. If it
		is FALSE, it clears it (low).

W
wdenk 已提交
1304
		eg: #define I2C_SCL(bit) \
W
wdenk 已提交
1305
			if(bit) immr->im_cpm.cp_pbdat |=  PB_SCL; \
W
wdenk 已提交
1306
			else	immr->im_cpm.cp_pbdat &= ~PB_SCL
W
wdenk 已提交
1307

W
wdenk 已提交
1308 1309 1310 1311
		I2C_DELAY

		This delay is invoked four times per clock cycle so this
		controls the rate of data transfer.  The data rate thus
W
wdenk 已提交
1312
		is 1 / (I2C_DELAY * 4). Often defined to be something
1313 1314
		like:

W
wdenk 已提交
1315
		#define I2C_DELAY  udelay(2)
W
wdenk 已提交
1316

1317 1318
		CFG_I2C_INIT_BOARD

W
wdenk 已提交
1319 1320 1321 1322 1323 1324 1325 1326
		When a board is reset during an i2c bus transfer
		chips might think that the current transfer is still
		in progress. On some boards it is possible to access
		the i2c SCLK line directly, either by using the
		processor pin as a GPIO or by having a second pin
		connected to the bus. If this option is defined a
		custom i2c_init_board() routine in boards/xxx/board.c
		is run early in the boot sequence.
1327

W
wdenk 已提交
1328 1329 1330 1331 1332 1333
		CONFIG_I2CFAST (PPC405GP|PPC405EP only)

		This option enables configuration of bi_iic_fast[] flags
		in u-boot bd_info structure based on u-boot environment
		variable "i2cfast". (see also i2cfast)

B
Ben Warren 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		CONFIG_I2C_MULTI_BUS

		This option allows the use of multiple I2C buses, each of which
		must have a controller.  At any point in time, only one bus is
		active.  To switch to a different bus, use the 'i2c dev' command.
		Note that bus numbering is zero-based.

		CFG_I2C_NOPROBES

		This option specifies a list of I2C devices that will be skipped
		when the 'i2c probe' command is issued (or 'iprobe' using the legacy
		command).  If CONFIG_I2C_MULTI_BUS is set, specify a list of bus-device
1346
		pairs.	Otherwise, specify a 1D array of device addresses
B
Ben Warren 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

		e.g.
			#undef	CONFIG_I2C_MULTI_BUS
			#define CFG_I2C_NOPROBES	{0x50,0x68}

		will skip addresses 0x50 and 0x68 on a board with one I2C bus

			#define	CONFIG_I2C_MULTI_BUS
			#define CFG_I2C_MULTI_NOPROBES	{{0,0x50},{0,0x68},{1,0x54}}

		will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1

T
Timur Tabi 已提交
1359 1360 1361 1362 1363
		CFG_SPD_BUS_NUM

		If defined, then this indicates the I2C bus number for DDR SPD.
		If not defined, then U-Boot assumes that SPD is on I2C bus 0.

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		CFG_RTC_BUS_NUM

		If defined, then this indicates the I2C bus number for the RTC.
		If not defined, then U-Boot assumes that RTC is on I2C bus 0.

		CFG_DTT_BUS_NUM

		If defined, then this indicates the I2C bus number for the DTT.
		If not defined, then U-Boot assumes that DTT is on I2C bus 0.

T
Timur Tabi 已提交
1374 1375 1376
		CONFIG_FSL_I2C

		Define this option if you want to use Freescale's I2C driver in
1377
		drivers/i2c/fsl_i2c.c.
T
Timur Tabi 已提交
1378 1379


W
wdenk 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
- SPI Support:	CONFIG_SPI

		Enables SPI driver (so far only tested with
		SPI EEPROM, also an instance works with Crystal A/D and
		D/As on the SACSng board)

		CONFIG_SPI_X

		Enables extended (16-bit) SPI EEPROM addressing.
		(symmetrical to CONFIG_I2C_X)

		CONFIG_SOFT_SPI

W
wdenk 已提交
1393 1394 1395 1396 1397 1398 1399
		Enables a software (bit-bang) SPI driver rather than
		using hardware support. This is a general purpose
		driver that only requires three general I/O port pins
		(two outputs, one input) to function. If this is
		defined, the board configuration must define several
		SPI configuration items (port pins to use, etc). For
		an example, see include/configs/sacsng.h.
W
wdenk 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408
		CONFIG_HARD_SPI

		Enables a hardware SPI driver for general-purpose reads
		and writes.  As with CONFIG_SOFT_SPI, the board configuration
		must define a list of chip-select function pointers.
		Currently supported on some MPC8xxx processors.  For an
		example, see include/configs/mpc8349emds.h.

1409
- FPGA Support: CONFIG_FPGA
W
wdenk 已提交
1410

1411 1412 1413 1414 1415 1416
		Enables FPGA subsystem.

		CONFIG_FPGA_<vendor>

		Enables support for specific chip vendors.
		(ALTERA, XILINX)
W
wdenk 已提交
1417

1418
		CONFIG_FPGA_<family>
W
wdenk 已提交
1419

1420 1421 1422 1423 1424 1425
		Enables support for FPGA family.
		(SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)

		CONFIG_FPGA_COUNT

		Specify the number of FPGA devices to support.
W
wdenk 已提交
1426

W
wdenk 已提交
1427
		CFG_FPGA_PROG_FEEDBACK
W
wdenk 已提交
1428

W
wdenk 已提交
1429
		Enable printing of hash marks during FPGA configuration.
W
wdenk 已提交
1430 1431 1432

		CFG_FPGA_CHECK_BUSY

W
wdenk 已提交
1433 1434 1435 1436
		Enable checks on FPGA configuration interface busy
		status by the configuration function. This option
		will require a board or device specific function to
		be written.
W
wdenk 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

		CONFIG_FPGA_DELAY

		If defined, a function that provides delays in the FPGA
		configuration driver.

		CFG_FPGA_CHECK_CTRLC
		Allow Control-C to interrupt FPGA configuration

		CFG_FPGA_CHECK_ERROR

W
wdenk 已提交
1448 1449 1450 1451
		Check for configuration errors during FPGA bitfile
		loading. For example, abort during Virtex II
		configuration if the INIT_B line goes low (which
		indicated a CRC error).
W
wdenk 已提交
1452 1453 1454

		CFG_FPGA_WAIT_INIT

W
wdenk 已提交
1455 1456 1457 1458
		Maximum time to wait for the INIT_B line to deassert
		after PROB_B has been deasserted during a Virtex II
		FPGA configuration sequence. The default time is 500
		mS.
W
wdenk 已提交
1459 1460 1461

		CFG_FPGA_WAIT_BUSY

W
wdenk 已提交
1462 1463
		Maximum time to wait for BUSY to deassert during
		Virtex II FPGA configuration. The default is 5 mS.
W
wdenk 已提交
1464 1465 1466

		CFG_FPGA_WAIT_CONFIG

W
wdenk 已提交
1467 1468
		Time to wait after FPGA configuration. The default is
		200 mS.
W
wdenk 已提交
1469 1470 1471 1472

- Configuration Management:
		CONFIG_IDENT_STRING

W
wdenk 已提交
1473 1474
		If defined, this string will be added to the U-Boot
		version information (U_BOOT_VERSION)
W
wdenk 已提交
1475 1476 1477

- Vendor Parameter Protection:

W
wdenk 已提交
1478 1479
		U-Boot considers the values of the environment
		variables "serial#" (Board Serial Number) and
W
wdenk 已提交
1480
		"ethaddr" (Ethernet Address) to be parameters that
W
wdenk 已提交
1481 1482 1483 1484 1485
		are set once by the board vendor / manufacturer, and
		protects these variables from casual modification by
		the user. Once set, these variables are read-only,
		and write or delete attempts are rejected. You can
		change this behviour:
W
wdenk 已提交
1486 1487 1488

		If CONFIG_ENV_OVERWRITE is #defined in your config
		file, the write protection for vendor parameters is
1489
		completely disabled. Anybody can change or delete
W
wdenk 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		these parameters.

		Alternatively, if you #define _both_ CONFIG_ETHADDR
		_and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
		ethernet address is installed in the environment,
		which can be changed exactly ONCE by the user. [The
		serial# is unaffected by this, i. e. it remains
		read-only.]

- Protected RAM:
		CONFIG_PRAM

		Define this variable to enable the reservation of
		"protected RAM", i. e. RAM which is not overwritten
		by U-Boot. Define CONFIG_PRAM to hold the number of
		kB you want to reserve for pRAM. You can overwrite
		this default value by defining an environment
		variable "pram" to the number of kB you want to
		reserve. Note that the board info structure will
		still show the full amount of RAM. If pRAM is
		reserved, a new environment variable "mem" will
		automatically be defined to hold the amount of
		remaining RAM in a form that can be passed as boot
		argument to Linux, for instance like that:

1515
			setenv bootargs ... mem=\${mem}
W
wdenk 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
			saveenv

		This way you can tell Linux not to use this memory,
		either, which results in a memory region that will
		not be affected by reboots.

		*WARNING* If your board configuration uses automatic
		detection of the RAM size, you must make sure that
		this memory test is non-destructive. So far, the
		following board configurations are known to be
		"pRAM-clean":

			ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL,
			HERMES, IP860, RPXlite, LWMON, LANTEC,
			PCU_E, FLAGADM, TQM8260

- Error Recovery:
		CONFIG_PANIC_HANG

		Define this variable to stop the system in case of a
		fatal error, so that you have to reset it manually.
		This is probably NOT a good idea for an embedded
		system where you want to system to reboot
		automatically as fast as possible, but it may be
		useful during development since you can try to debug
		the conditions that lead to the situation.

		CONFIG_NET_RETRY_COUNT

W
wdenk 已提交
1545 1546 1547 1548
		This variable defines the number of retries for
		network operations like ARP, RARP, TFTP, or BOOTP
		before giving up the operation. If not defined, a
		default value of 5 is used.
W
wdenk 已提交
1549 1550

- Command Interpreter:
1551
		CONFIG_AUTO_COMPLETE
1552 1553 1554

		Enable auto completion of commands using TAB.

1555 1556
		Note that this feature has NOT been implemented yet
		for the "hush" shell.
1557 1558


W
wdenk 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		CFG_HUSH_PARSER

		Define this variable to enable the "hush" shell (from
		Busybox) as command line interpreter, thus enabling
		powerful command line syntax like
		if...then...else...fi conditionals or `&&' and '||'
		constructs ("shell scripts").

		If undefined, you get the old, much simpler behaviour
		with a somewhat smaller memory footprint.


		CFG_PROMPT_HUSH_PS2

		This defines the secondary prompt string, which is
		printed when the command interpreter needs more input
		to complete a command. Usually "> ".

	Note:

W
wdenk 已提交
1579 1580 1581 1582 1583 1584 1585
		In the current implementation, the local variables
		space and global environment variables space are
		separated. Local variables are those you define by
		simply typing `name=value'. To access a local
		variable later on, you have write `$name' or
		`${name}'; to execute the contents of a variable
		directly type `$name' at the command prompt.
W
wdenk 已提交
1586

W
wdenk 已提交
1587 1588 1589 1590
		Global environment variables are those you use
		setenv/printenv to work with. To run a command stored
		in such a variable, you need to use the run command,
		and you must not use the '$' sign to access them.
W
wdenk 已提交
1591 1592 1593 1594 1595 1596 1597

		To store commands and special characters in a
		variable, please use double quotation marks
		surrounding the whole text of the variable, instead
		of the backslashes before semicolons and special
		symbols.

1598 1599 1600
- Commandline Editing and History:
		CONFIG_CMDLINE_EDITING

W
Wolfgang Denk 已提交
1601 1602
		Enable editiong and History functions for interactive
		commandline input operations
1603

W
wdenk 已提交
1604
- Default Environment:
W
wdenk 已提交
1605 1606
		CONFIG_EXTRA_ENV_SETTINGS

W
wdenk 已提交
1607 1608
		Define this to contain any number of null terminated
		strings (variable = value pairs) that will be part of
W
wdenk 已提交
1609
		the default environment compiled into the boot image.
W
wdenk 已提交
1610

W
wdenk 已提交
1611 1612
		For example, place something like this in your
		board's config file:
W
wdenk 已提交
1613 1614 1615 1616 1617

		#define CONFIG_EXTRA_ENV_SETTINGS \
			"myvar1=value1\0" \
			"myvar2=value2\0"

W
wdenk 已提交
1618 1619 1620 1621
		Warning: This method is based on knowledge about the
		internal format how the environment is stored by the
		U-Boot code. This is NOT an official, exported
		interface! Although it is unlikely that this format
W
wdenk 已提交
1622
		will change soon, there is no guarantee either.
W
wdenk 已提交
1623 1624
		You better know what you are doing here.

W
wdenk 已提交
1625 1626 1627 1628
		Note: overly (ab)use of the default environment is
		discouraged. Make sure to check other ways to preset
		the environment like the autoscript function or the
		boot command first.
W
wdenk 已提交
1629

W
wdenk 已提交
1630
- DataFlash Support:
1631 1632
		CONFIG_HAS_DATAFLASH

W
wdenk 已提交
1633 1634 1635
		Defining this option enables DataFlash features and
		allows to read/write in Dataflash via the standard
		commands cp, md...
1636

W
wdenk 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
- SystemACE Support:
		CONFIG_SYSTEMACE

		Adding this option adds support for Xilinx SystemACE
		chips attached via some sort of local bus. The address
		of the chip must alsh be defined in the
		CFG_SYSTEMACE_BASE macro. For example:

		#define CONFIG_SYSTEMACE
		#define CFG_SYSTEMACE_BASE 0xf0000000

		When SystemACE support is added, the "ace" device type
		becomes available to the fat commands, i.e. fatls.

1651 1652 1653
- TFTP Fixed UDP Port:
		CONFIG_TFTP_PORT

1654
		If this is defined, the environment variable tftpsrcp
1655
		is used to supply the TFTP UDP source port value.
1656
		If tftpsrcp isn't defined, the normal pseudo-random port
1657 1658
		number generator is used.

1659 1660 1661 1662 1663
		Also, the environment variable tftpdstp is used to supply
		the TFTP UDP destination port value.  If tftpdstp isn't
		defined, the normal port 69 is used.

		The purpose for tftpsrcp is to allow a TFTP server to
1664 1665 1666 1667 1668 1669 1670
		blindly start the TFTP transfer using the pre-configured
		target IP address and UDP port. This has the effect of
		"punching through" the (Windows XP) firewall, allowing
		the remainder of the TFTP transfer to proceed normally.
		A better solution is to properly configure the firewall,
		but sometimes that is not allowed.

W
wdenk 已提交
1671
- Show boot progress:
W
wdenk 已提交
1672 1673
		CONFIG_SHOW_BOOT_PROGRESS

W
wdenk 已提交
1674 1675 1676 1677 1678 1679
		Defining this option allows to add some board-
		specific code (calling a user-provided function
		"show_boot_progress(int)") that enables you to show
		the system's boot progress on some display (for
		example, some LED's) on your board. At the moment,
		the following checkpoints are implemented:
W
wdenk 已提交
1680 1681 1682

  Arg	Where			When
    1	common/cmd_bootm.c	before attempting to boot an image
W
wdenk 已提交
1683
   -1	common/cmd_bootm.c	Image header has bad	 magic number
W
wdenk 已提交
1684
    2	common/cmd_bootm.c	Image header has correct magic number
W
wdenk 已提交
1685
   -2	common/cmd_bootm.c	Image header has bad	 checksum
W
wdenk 已提交
1686
    3	common/cmd_bootm.c	Image header has correct checksum
W
wdenk 已提交
1687
   -3	common/cmd_bootm.c	Image data   has bad	 checksum
W
wdenk 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    4	common/cmd_bootm.c	Image data   has correct checksum
   -4	common/cmd_bootm.c	Image is for unsupported architecture
    5	common/cmd_bootm.c	Architecture check OK
   -5	common/cmd_bootm.c	Wrong Image Type (not kernel, multi, standalone)
    6	common/cmd_bootm.c	Image Type check OK
   -6	common/cmd_bootm.c	gunzip uncompression error
   -7	common/cmd_bootm.c	Unimplemented compression type
    7	common/cmd_bootm.c	Uncompression OK
   -8	common/cmd_bootm.c	Wrong Image Type (not kernel, multi, standalone)
    8	common/cmd_bootm.c	Image Type check OK
   -9	common/cmd_bootm.c	Unsupported OS (not Linux, BSD, VxWorks, QNX)
    9	common/cmd_bootm.c	Start initial ramdisk verification
W
wdenk 已提交
1700 1701
  -10	common/cmd_bootm.c	Ramdisk header has bad	   magic number
  -11	common/cmd_bootm.c	Ramdisk header has bad	   checksum
W
wdenk 已提交
1702
   10	common/cmd_bootm.c	Ramdisk header is OK
W
wdenk 已提交
1703
  -12	common/cmd_bootm.c	Ramdisk data   has bad	   checksum
W
wdenk 已提交
1704 1705 1706 1707 1708 1709 1710
   11	common/cmd_bootm.c	Ramdisk data   has correct checksum
   12	common/cmd_bootm.c	Ramdisk verification complete, start loading
  -13	common/cmd_bootm.c	Wrong Image Type (not PPC Linux Ramdisk)
   13	common/cmd_bootm.c	Start multifile image verification
   14	common/cmd_bootm.c	No initial ramdisk, no multifile, continue.
   15	common/cmd_bootm.c	All preparation done, transferring control to OS

W
wdenk 已提交
1711 1712 1713
  -30	lib_ppc/board.c		Fatal error, hang the system
  -31	post/post.c		POST test failed, detected by post_output_backlog()
  -32	post/post.c		POST test failed, detected by post_run_single()
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
   34	common/cmd_doc.c	before loading a Image from a DOC device
  -35	common/cmd_doc.c	Bad usage of "doc" command
   35	common/cmd_doc.c	correct usage of "doc" command
  -36	common/cmd_doc.c	No boot device
   36	common/cmd_doc.c	correct boot device
  -37	common/cmd_doc.c	Unknown Chip ID on boot device
   37	common/cmd_doc.c	correct chip ID found, device available
  -38	common/cmd_doc.c	Read Error on boot device
   38	common/cmd_doc.c	reading Image header from DOC device OK
  -39	common/cmd_doc.c	Image header has bad magic number
   39	common/cmd_doc.c	Image header has correct magic number
  -40	common/cmd_doc.c	Error reading Image from DOC device
   40	common/cmd_doc.c	Image header has correct magic number
   41	common/cmd_ide.c	before loading a Image from a IDE device
  -42	common/cmd_ide.c	Bad usage of "ide" command
   42	common/cmd_ide.c	correct usage of "ide" command
  -43	common/cmd_ide.c	No boot device
   43	common/cmd_ide.c	boot device found
  -44	common/cmd_ide.c	Device not available
   44	common/cmd_ide.c	Device available
  -45	common/cmd_ide.c	wrong partition selected
   45	common/cmd_ide.c	partition selected
  -46	common/cmd_ide.c	Unknown partition table
   46	common/cmd_ide.c	valid partition table found
  -47	common/cmd_ide.c	Invalid partition type
   47	common/cmd_ide.c	correct partition type
  -48	common/cmd_ide.c	Error reading Image Header on boot device
   48	common/cmd_ide.c	reading Image Header from IDE device OK
  -49	common/cmd_ide.c	Image header has bad magic number
   49	common/cmd_ide.c	Image header has correct magic number
  -50	common/cmd_ide.c	Image header has bad	 checksum
   50	common/cmd_ide.c	Image header has correct checksum
  -51	common/cmd_ide.c	Error reading Image from IDE device
   51	common/cmd_ide.c	reading Image from IDE device OK
   52	common/cmd_nand.c	before loading a Image from a NAND device
  -53	common/cmd_nand.c	Bad usage of "nand" command
   53	common/cmd_nand.c	correct usage of "nand" command
  -54	common/cmd_nand.c	No boot device
   54	common/cmd_nand.c	boot device found
  -55	common/cmd_nand.c	Unknown Chip ID on boot device
   55	common/cmd_nand.c	correct chip ID found, device available
  -56	common/cmd_nand.c	Error reading Image Header on boot device
   56	common/cmd_nand.c	reading Image Header from NAND device OK
  -57	common/cmd_nand.c	Image header has bad magic number
   57	common/cmd_nand.c	Image header has correct magic number
  -58	common/cmd_nand.c	Error reading Image from NAND device
   58	common/cmd_nand.c	reading Image from NAND device OK

  -60	common/env_common.c	Environment has a bad CRC, using default

   64	net/eth.c		starting with Ethernetconfiguration.
  -64	net/eth.c		no Ethernet found.
   65	net/eth.c		Ethernet found.

  -80	common/cmd_net.c	usage wrong
   80	common/cmd_net.c	before calling NetLoop()
  -81	common/cmd_net.c	some error in NetLoop() occured
   81	common/cmd_net.c	NetLoop() back without error
  -82	common/cmd_net.c	size == 0 (File with size 0 loaded)
   82	common/cmd_net.c	trying automatic boot
   83	common/cmd_net.c	running autoscript
  -83	common/cmd_net.c	some error in automatic boot or autoscript
   84	common/cmd_net.c	end without errors
W
wdenk 已提交
1778 1779 1780 1781

Modem Support:
--------------

W
wdenk 已提交
1782
[so far only for SMDK2400 and TRAB boards]
W
wdenk 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

- Modem support endable:
		CONFIG_MODEM_SUPPORT

- RTS/CTS Flow control enable:
		CONFIG_HWFLOW

- Modem debug support:
		CONFIG_MODEM_SUPPORT_DEBUG

W
wdenk 已提交
1793 1794
		Enables debugging stuff (char screen[1024], dbg())
		for modem support. Useful only with BDI2000.
W
wdenk 已提交
1795

W
wdenk 已提交
1796 1797
- Interrupt support (PPC):

W
wdenk 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		There are common interrupt_init() and timer_interrupt()
		for all PPC archs. interrupt_init() calls interrupt_init_cpu()
		for cpu specific initialization. interrupt_init_cpu()
		should set decrementer_count to appropriate value. If
		cpu resets decrementer automatically after interrupt
		(ppc4xx) it should set decrementer_count to zero.
		timer_interrupt() calls timer_interrupt_cpu() for cpu
		specific handling. If board has watchdog / status_led
		/ other_activity_monitor it works automatically from
		general timer_interrupt().
W
wdenk 已提交
1808

W
wdenk 已提交
1809 1810
- General:

W
wdenk 已提交
1811 1812 1813 1814 1815 1816 1817
		In the target system modem support is enabled when a
		specific key (key combination) is pressed during
		power-on. Otherwise U-Boot will boot normally
		(autoboot). The key_pressed() fuction is called from
		board_init(). Currently key_pressed() is a dummy
		function, returning 1 and thus enabling modem
		initialization.
W
wdenk 已提交
1818

W
wdenk 已提交
1819 1820 1821 1822
		If there are no modem init strings in the
		environment, U-Boot proceed to autoboot; the
		previous output (banner, info printfs) will be
		supressed, though.
W
wdenk 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

		See also: doc/README.Modem


Configuration Settings:
-----------------------

- CFG_LONGHELP: Defined when you want long help messages included;
		undefine this when you're short of memory.

- CFG_PROMPT:	This is what U-Boot prints on the console to
		prompt for user input.

- CFG_CBSIZE:	Buffer size for input from the Console

- CFG_PBSIZE:	Buffer size for Console output

- CFG_MAXARGS:	max. Number of arguments accepted for monitor commands

- CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to
		the application (usually a Linux kernel) when it is
		booted

- CFG_BAUDRATE_TABLE:
		List of legal baudrate settings for this board.

- CFG_CONSOLE_INFO_QUIET
W
wdenk 已提交
1850
		Suppress display of console information at boot.
W
wdenk 已提交
1851 1852

- CFG_CONSOLE_IS_IN_ENV
W
wdenk 已提交
1853 1854 1855
		If the board specific function
			extern int overwrite_console (void);
		returns 1, the stdin, stderr and stdout are switched to the
W
wdenk 已提交
1856 1857 1858
		serial port, else the settings in the environment are used.

- CFG_CONSOLE_OVERWRITE_ROUTINE
W
wdenk 已提交
1859
		Enable the call to overwrite_console().
W
wdenk 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868

- CFG_CONSOLE_ENV_OVERWRITE
		Enable overwrite of previous console environment settings.

- CFG_MEMTEST_START, CFG_MEMTEST_END:
		Begin and End addresses of the area used by the
		simple memory test.

- CFG_ALT_MEMTEST:
W
wdenk 已提交
1869
		Enable an alternate, more extensive memory test.
W
wdenk 已提交
1870

W
wdenk 已提交
1871 1872 1873 1874
- CFG_MEMTEST_SCRATCH:
		Scratch address used by the alternate memory test
		You only need to set this if address zero isn't writeable

W
wdenk 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
- CFG_TFTP_LOADADDR:
		Default load address for network file downloads

- CFG_LOADS_BAUD_CHANGE:
		Enable temporary baudrate change while serial download

- CFG_SDRAM_BASE:
		Physical start address of SDRAM. _Must_ be 0 here.

- CFG_MBIO_BASE:
		Physical start address of Motherboard I/O (if using a
		Cogent motherboard)

- CFG_FLASH_BASE:
		Physical start address of Flash memory.

- CFG_MONITOR_BASE:
		Physical start address of boot monitor code (set by
		make config files to be same as the text base address
		(TEXT_BASE) used when linking) - same as
		CFG_FLASH_BASE when booting from flash.

- CFG_MONITOR_LEN:
W
wdenk 已提交
1898 1899 1900 1901
		Size of memory reserved for monitor code, used to
		determine _at_compile_time_ (!) if the environment is
		embedded within the U-Boot image, or in a separate
		flash sector.
W
wdenk 已提交
1902 1903 1904 1905

- CFG_MALLOC_LEN:
		Size of DRAM reserved for malloc() use.

1906 1907 1908 1909 1910 1911
- CFG_BOOTM_LEN:
		Normally compressed uImages are limited to an
		uncompressed size of 8 MBytes. If this is not enough,
		you can define CFG_BOOTM_LEN in your board config file
		to adjust this setting to your needs.

W
wdenk 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
- CFG_BOOTMAPSZ:
		Maximum size of memory mapped by the startup code of
		the Linux kernel; all data that must be processed by
		the Linux kernel (bd_info, boot arguments, eventually
		initrd image) must be put below this limit.

- CFG_MAX_FLASH_BANKS:
		Max number of Flash memory banks

- CFG_MAX_FLASH_SECT:
		Max number of sectors on a Flash chip

- CFG_FLASH_ERASE_TOUT:
		Timeout for Flash erase operations (in ms)

- CFG_FLASH_WRITE_TOUT:
		Timeout for Flash write operations (in ms)

W
wdenk 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
- CFG_FLASH_LOCK_TOUT
		Timeout for Flash set sector lock bit operation (in ms)

- CFG_FLASH_UNLOCK_TOUT
		Timeout for Flash clear lock bits operation (in ms)

- CFG_FLASH_PROTECTION
		If defined, hardware flash sectors protection is used
		instead of U-Boot software protection.

W
wdenk 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
- CFG_DIRECT_FLASH_TFTP:

		Enable TFTP transfers directly to flash memory;
		without this option such a download has to be
		performed in two steps: (1) download to RAM, and (2)
		copy from RAM to flash.

		The two-step approach is usually more reliable, since
		you can check if the download worked before you erase
		the flash, but in some situations (when sytem RAM is
		too limited to allow for a tempory copy of the
		downloaded image) this option may be very useful.

- CFG_FLASH_CFI:
W
wdenk 已提交
1954
		Define if the flash driver uses extra elements in the
W
wdenk 已提交
1955 1956 1957 1958 1959
		common flash structure for storing flash geometry.

- CFG_FLASH_CFI_DRIVER
		This option also enables the building of the cfi_flash driver
		in the drivers directory
W
wdenk 已提交
1960

1961 1962 1963 1964 1965 1966
- CFG_FLASH_QUIET_TEST
		If this option is defined, the common CFI flash doesn't
		print it's warning upon not recognized FLASH banks. This
		is useful, if some of the configured banks are only
		optionally available.

1967 1968 1969 1970 1971
- CONFIG_FLASH_SHOW_PROGRESS
		If defined (must be an integer), print out countdown
		digits and dots.  Recommended value: 45 (9..1) for 80
		column displays, 15 (3..1) for 40 column displays.

S
stroese 已提交
1972 1973 1974 1975 1976 1977 1978 1979
- CFG_RX_ETH_BUFFER:
		Defines the number of ethernet receive buffers. On some
		ethernet controllers it is recommended to set this value
		to 8 or even higher (EEPRO100 or 405 EMAC), since all
		buffers can be full shortly after enabling the interface
		on high ethernet traffic.
		Defaults to 4 if not defined.

W
wdenk 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
The following definitions that deal with the placement and management
of environment data (variable area); in general, we support the
following configurations:

- CFG_ENV_IS_IN_FLASH:

	Define this if the environment is in flash memory.

	a) The environment occupies one whole flash sector, which is
	   "embedded" in the text segment with the U-Boot code. This
	   happens usually with "bottom boot sector" or "top boot
	   sector" type flash chips, which have several smaller
	   sectors at the start or the end. For instance, such a
	   layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
	   such a case you would place the environment in one of the
	   4 kB sectors - with U-Boot code before and after it. With
	   "top boot sector" type flash chips, you would put the
	   environment in one of the last sectors, leaving a gap
	   between U-Boot and the environment.

	- CFG_ENV_OFFSET:

	   Offset of environment data (variable area) to the
	   beginning of flash memory; for instance, with bottom boot
	   type flash chips the second sector can be used: the offset
	   for this sector is given here.

	   CFG_ENV_OFFSET is used relative to CFG_FLASH_BASE.

	- CFG_ENV_ADDR:

	   This is just another way to specify the start address of
	   the flash sector containing the environment (instead of
	   CFG_ENV_OFFSET).

	- CFG_ENV_SECT_SIZE:

	   Size of the sector containing the environment.


	b) Sometimes flash chips have few, equal sized, BIG sectors.
	   In such a case you don't want to spend a whole sector for
	   the environment.

	- CFG_ENV_SIZE:

	   If you use this in combination with CFG_ENV_IS_IN_FLASH
	   and CFG_ENV_SECT_SIZE, you can specify to use only a part
	   of this flash sector for the environment. This saves
	   memory for the RAM copy of the environment.

	   It may also save flash memory if you decide to use this
	   when your environment is "embedded" within U-Boot code,
	   since then the remainder of the flash sector could be used
	   for U-Boot code. It should be pointed out that this is
	   STRONGLY DISCOURAGED from a robustness point of view:
	   updating the environment in flash makes it always
	   necessary to erase the WHOLE sector. If something goes
	   wrong before the contents has been restored from a copy in
	   RAM, your target system will be dead.

	- CFG_ENV_ADDR_REDUND
	  CFG_ENV_SIZE_REDUND

W
wdenk 已提交
2044 2045
	   These settings describe a second storage area used to hold
	   a redundand copy of the environment data, so that there is
W
wdenk 已提交
2046
	   a valid backup copy in case there is a power failure during
W
wdenk 已提交
2047
	   a "saveenv" operation.
W
wdenk 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

BE CAREFUL! Any changes to the flash layout, and some changes to the
source code will make it necessary to adapt <board>/u-boot.lds*
accordingly!


- CFG_ENV_IS_IN_NVRAM:

	Define this if you have some non-volatile memory device
	(NVRAM, battery buffered SRAM) which you want to use for the
	environment.

	- CFG_ENV_ADDR:
	- CFG_ENV_SIZE:

	  These two #defines are used to determin the memory area you
	  want to use for environment. It is assumed that this memory
	  can just be read and written to, without any special
	  provision.

BE CAREFUL! The first access to the environment happens quite early
in U-Boot initalization (when we try to get the setting of for the
console baudrate). You *MUST* have mappend your NVRAM area then, or
U-Boot will hang.

Please note that even with NVRAM we still use a copy of the
environment in RAM: we could work on NVRAM directly, but we want to
keep settings there always unmodified except somebody uses "saveenv"
to save the current settings.


- CFG_ENV_IS_IN_EEPROM:

	Use this if you have an EEPROM or similar serial access
	device and a driver for it.

	- CFG_ENV_OFFSET:
	- CFG_ENV_SIZE:

	  These two #defines specify the offset and size of the
	  environment area within the total memory of your EEPROM.

	- CFG_I2C_EEPROM_ADDR:
	  If defined, specified the chip address of the EEPROM device.
	  The default address is zero.

	- CFG_EEPROM_PAGE_WRITE_BITS:
	  If defined, the number of bits used to address bytes in a
	  single page in the EEPROM device.  A 64 byte page, for example
	  would require six bits.

	- CFG_EEPROM_PAGE_WRITE_DELAY_MS:
	  If defined, the number of milliseconds to delay between
W
wdenk 已提交
2101
	  page writes.	The default is zero milliseconds.
W
wdenk 已提交
2102 2103 2104 2105 2106

	- CFG_I2C_EEPROM_ADDR_LEN:
	  The length in bytes of the EEPROM memory array address.  Note
	  that this is NOT the chip address length!

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	- CFG_I2C_EEPROM_ADDR_OVERFLOW:
	  EEPROM chips that implement "address overflow" are ones
	  like Catalyst 24WC04/08/16 which has 9/10/11 bits of
	  address and the extra bits end up in the "chip address" bit
	  slots. This makes a 24WC08 (1Kbyte) chip look like four 256
	  byte chips.

	  Note that we consider the length of the address field to
	  still be one byte because the extra address bits are hidden
	  in the chip address.

W
wdenk 已提交
2118 2119 2120 2121
	- CFG_EEPROM_SIZE:
	  The size in bytes of the EEPROM device.


2122 2123
- CFG_ENV_IS_IN_DATAFLASH:

W
wdenk 已提交
2124
	Define this if you have a DataFlash memory device which you
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	want to use for the environment.

	- CFG_ENV_OFFSET:
	- CFG_ENV_ADDR:
	- CFG_ENV_SIZE:

	  These three #defines specify the offset and size of the
	  environment area within the total memory of your DataFlash placed
	  at the specified address.

W
wdenk 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
- CFG_ENV_IS_IN_NAND:

	Define this if you have a NAND device which you want to use
	for the environment.

	- CFG_ENV_OFFSET:
	- CFG_ENV_SIZE:

	  These two #defines specify the offset and size of the environment
	  area within the first NAND device.
2145

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	- CFG_ENV_OFFSET_REDUND

	  This setting describes a second storage area of CFG_ENV_SIZE
	  size used to hold a redundant copy of the environment data,
	  so that there is a valid backup copy in case there is a
	  power failure during a "saveenv" operation.

	Note: CFG_ENV_OFFSET and CFG_ENV_OFFSET_REDUND must be aligned
	to a block boundary, and CFG_ENV_SIZE must be a multiple of
	the NAND devices block size.

W
wdenk 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
- CFG_SPI_INIT_OFFSET

	Defines offset to the initial SPI buffer area in DPRAM. The
	area is used at an early stage (ROM part) if the environment
	is configured to reside in the SPI EEPROM: We need a 520 byte
	scratch DPRAM area. It is used between the two initialization
	calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
	to be a good choice since it makes it far enough from the
	start of the data area as well as from the stack pointer.

B
Bruce Adler 已提交
2167
Please note that the environment is read-only until the monitor
W
wdenk 已提交
2168 2169 2170 2171
has been relocated to RAM and a RAM copy of the environment has been
created; also, when using EEPROM you will have to use getenv_r()
until then to read environment variables.

W
wdenk 已提交
2172 2173 2174 2175 2176 2177
The environment is protected by a CRC32 checksum. Before the monitor
is relocated into RAM, as a result of a bad CRC you will be working
with the compiled-in default environment - *silently*!!! [This is
necessary, because the first environment variable we need is the
"baudrate" setting for the console - if we have a bad CRC, we don't
have any device yet where we could complain.]
W
wdenk 已提交
2178 2179 2180

Note: once the monitor has been relocated, then it will complain if
the default environment is used; a new CRC is computed as soon as you
W
wdenk 已提交
2181
use the "saveenv" command to store a valid environment.
W
wdenk 已提交
2182

W
wdenk 已提交
2183
- CFG_FAULT_ECHO_LINK_DOWN:
W
wdenk 已提交
2184
		Echo the inverted Ethernet link state to the fault LED.
W
wdenk 已提交
2185 2186 2187 2188 2189

		Note: If this option is active, then CFG_FAULT_MII_ADDR
		      also needs to be defined.

- CFG_FAULT_MII_ADDR:
W
wdenk 已提交
2190
		MII address of the PHY to check for the Ethernet link state.
W
wdenk 已提交
2191

W
wdenk 已提交
2192 2193 2194 2195 2196 2197 2198
- CFG_64BIT_VSPRINTF:
		Makes vsprintf (and all *printf functions) support printing
		of 64bit values by using the L quantifier

- CFG_64BIT_STRTOUL:
		Adds simple_strtoull that returns a 64bit value

W
wdenk 已提交
2199
Low Level (hardware related) configuration options:
W
wdenk 已提交
2200
---------------------------------------------------
W
wdenk 已提交
2201 2202 2203 2204 2205 2206

- CFG_CACHELINE_SIZE:
		Cache Line Size of the CPU.

- CFG_DEFAULT_IMMR:
		Default address of the IMMR after system reset.
W
wdenk 已提交
2207

W
wdenk 已提交
2208 2209 2210
		Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
		and RPXsuper) to be able to adjust the position of
		the IMMR register after a reset.
W
wdenk 已提交
2211

W
wdenk 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
- Floppy Disk Support:
		CFG_FDC_DRIVE_NUMBER

		the default drive number (default value 0)

		CFG_ISA_IO_STRIDE

		defines the spacing between fdc chipset registers
		(default value 1)

		CFG_ISA_IO_OFFSET

W
wdenk 已提交
2224 2225 2226
		defines the offset of register from address. It
		depends on which part of the data bus is connected to
		the fdc chipset. (default value 0)
W
wdenk 已提交
2227

W
wdenk 已提交
2228 2229 2230
		If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
		CFG_FDC_DRIVE_NUMBER are undefined, they take their
		default value.
W
wdenk 已提交
2231

W
wdenk 已提交
2232 2233 2234 2235 2236
		if CFG_FDC_HW_INIT is defined, then the function
		fdc_hw_init() is called at the beginning of the FDC
		setup. fdc_hw_init() must be provided by the board
		source code. It is used to make hardware dependant
		initializations.
W
wdenk 已提交
2237

W
wdenk 已提交
2238
- CFG_IMMR:	Physical address of the Internal Memory.
W
wdenk 已提交
2239
		DO NOT CHANGE unless you know exactly what you're
W
wdenk 已提交
2240
		doing! (11-4) [MPC8xx/82xx systems only]
W
wdenk 已提交
2241 2242 2243

- CFG_INIT_RAM_ADDR:

W
wdenk 已提交
2244
		Start address of memory area that can be used for
W
wdenk 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		initial data and stack; please note that this must be
		writable memory that is working WITHOUT special
		initialization, i. e. you CANNOT use normal RAM which
		will become available only after programming the
		memory controller and running certain initialization
		sequences.

		U-Boot uses the following memory types:
		- MPC8xx and MPC8260: IMMR (internal memory of the CPU)
		- MPC824X: data cache
		- PPC4xx:  data cache

W
wdenk 已提交
2257
- CFG_GBL_DATA_OFFSET:
W
wdenk 已提交
2258 2259 2260

		Offset of the initial data structure in the memory
		area defined by CFG_INIT_RAM_ADDR. Usually
W
wdenk 已提交
2261
		CFG_GBL_DATA_OFFSET is chosen such that the initial
W
wdenk 已提交
2262 2263 2264 2265
		data is located at the end of the available space
		(sometimes written as (CFG_INIT_RAM_END -
		CFG_INIT_DATA_SIZE), and the initial stack is just
		below that area (growing from (CFG_INIT_RAM_ADDR +
W
wdenk 已提交
2266
		CFG_GBL_DATA_OFFSET) downward.
W
wdenk 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	Note:
		On the MPC824X (or other systems that use the data
		cache for initial memory) the address chosen for
		CFG_INIT_RAM_ADDR is basically arbitrary - it must
		point to an otherwise UNUSED address space between
		the top of RAM and the start of the PCI space.

- CFG_SIUMCR:	SIU Module Configuration (11-6)

- CFG_SYPCR:	System Protection Control (11-9)

- CFG_TBSCR:	Time Base Status and Control (11-26)

- CFG_PISCR:	Periodic Interrupt Status and Control (11-31)

- CFG_PLPRCR:	PLL, Low-Power, and Reset Control Register (15-30)

- CFG_SCCR:	System Clock and reset Control Register (15-27)

- CFG_OR_TIMING_SDRAM:
		SDRAM timing

- CFG_MAMR_PTA:
		periodic timer for refresh

- CFG_DER:	Debug Event Register (37-47)

- FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CFG_REMAP_OR_AM,
  CFG_PRELIM_OR_AM, CFG_OR_TIMING_FLASH, CFG_OR0_REMAP,
  CFG_OR0_PRELIM, CFG_BR0_PRELIM, CFG_OR1_REMAP, CFG_OR1_PRELIM,
  CFG_BR1_PRELIM:
		Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)

- SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
  CFG_OR_TIMING_SDRAM, CFG_OR2_PRELIM, CFG_BR2_PRELIM,
  CFG_OR3_PRELIM, CFG_BR3_PRELIM:
		Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)

- CFG_MAMR_PTA, CFG_MPTPR_2BK_4K, CFG_MPTPR_1BK_4K, CFG_MPTPR_2BK_8K,
  CFG_MPTPR_1BK_8K, CFG_MAMR_8COL, CFG_MAMR_9COL:
		Machine Mode Register and Memory Periodic Timer
		Prescaler definitions (SDRAM timing)

- CFG_I2C_UCODE_PATCH, CFG_I2C_DPMEM_OFFSET [0x1FC0]:
		enable I2C microcode relocation patch (MPC8xx);
		define relocation offset in DPRAM [DSP2]

2315 2316 2317 2318
- CFG_SMC_UCODE_PATCH, CFG_SMC_DPMEM_OFFSET [0x1FC0]:
		enable SMC microcode relocation patch (MPC8xx);
		define relocation offset in DPRAM [SMC1]

W
wdenk 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327
- CFG_SPI_UCODE_PATCH, CFG_SPI_DPMEM_OFFSET [0x1FC0]:
		enable SPI microcode relocation patch (MPC8xx);
		define relocation offset in DPRAM [SCC4]

- CFG_USE_OSCCLK:
		Use OSCM clock mode on MBX8xx board. Be careful,
		wrong setting might damage your board. Read
		doc/README.MBX before setting this variable!

2328
- CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
W
wdenk 已提交
2329 2330 2331 2332
		Offset of the bootmode word in DPRAM used by post
		(Power On Self Tests). This definition overrides
		#define'd default value in commproc.h resp.
		cpm_8260.h.
2333

S
stroese 已提交
2334 2335 2336 2337 2338 2339 2340
- CFG_PCI_SLV_MEM_LOCAL, CFG_PCI_SLV_MEM_BUS, CFG_PICMR0_MASK_ATTRIB,
  CFG_PCI_MSTR0_LOCAL, CFG_PCIMSK0_MASK, CFG_PCI_MSTR1_LOCAL,
  CFG_PCIMSK1_MASK, CFG_PCI_MSTR_MEM_LOCAL, CFG_PCI_MSTR_MEM_BUS,
  CFG_CPU_PCI_MEM_START, CFG_PCI_MSTR_MEM_SIZE, CFG_POCMR0_MASK_ATTRIB,
  CFG_PCI_MSTR_MEMIO_LOCAL, CFG_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
  CFG_PCI_MSTR_MEMIO_SIZE, CFG_POCMR1_MASK_ATTRIB, CFG_PCI_MSTR_IO_LOCAL,
  CFG_PCI_MSTR_IO_BUS, CFG_CPU_PCI_IO_START, CFG_PCI_MSTR_IO_SIZE,
W
wdenk 已提交
2341 2342 2343
  CFG_POCMR2_MASK_ATTRIB: (MPC826x only)
		Overrides the default PCI memory map in cpu/mpc8260/pci.c if set.

B
Ben Warren 已提交
2344
- CONFIG_SPD_EEPROM
2345 2346 2347
		Get DDR timing information from an I2C EEPROM. Common
		with pluggable memory modules such as SODIMMs

B
Ben Warren 已提交
2348 2349 2350 2351
  SPD_EEPROM_ADDRESS
		I2C address of the SPD EEPROM

- CFG_SPD_BUS_NUM
2352 2353 2354
		If SPD EEPROM is on an I2C bus other than the first
		one, specify here. Note that the value must resolve
		to something your driver can deal with.
B
Ben Warren 已提交
2355

2356
- CFG_83XX_DDR_USES_CS0
2357 2358
		Only for 83xx systems. If specified, then DDR should
		be configured using CS0 and CS1 instead of CS2 and CS3.
2359 2360

- CFG_83XX_DDR_USES_CS0
2361 2362
		Only for 83xx systems. If specified, then DDR should
		be configured using CS0 and CS1 instead of CS2 and CS3.
2363

2364 2365 2366 2367 2368
- CONFIG_ETHER_ON_FEC[12]
		Define to enable FEC[12] on a 8xx series processor.

- CONFIG_FEC[12]_PHY
		Define to the hardcoded PHY address which corresponds
W
wdenk 已提交
2369 2370
		to the given FEC; i. e.
			#define CONFIG_FEC1_PHY 4
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		means that the PHY with address 4 is connected to FEC1

		When set to -1, means to probe for first available.

- CONFIG_FEC[12]_PHY_NORXERR
		The PHY does not have a RXERR line (RMII only).
		(so program the FEC to ignore it).

- CONFIG_RMII
		Enable RMII mode for all FECs.
		Note that this is a global option, we can't
		have one FEC in standard MII mode and another in RMII mode.

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
- CONFIG_CRC32_VERIFY
		Add a verify option to the crc32 command.
		The syntax is:

		=> crc32 -v <address> <count> <crc32>

		Where address/count indicate a memory area
		and crc32 is the correct crc32 which the
		area should have.

W
wdenk 已提交
2394 2395
- CONFIG_LOOPW
		Add the "loopw" memory command. This only takes effect if
2396
		the memory commands are activated globally (CONFIG_CMD_MEM).
W
wdenk 已提交
2397

S
stroese 已提交
2398 2399 2400 2401 2402
- CONFIG_MX_CYCLIC
		Add the "mdc" and "mwc" memory commands. These are cyclic
		"md/mw" commands.
		Examples:

W
wdenk 已提交
2403
		=> mdc.b 10 4 500
S
stroese 已提交
2404 2405
		This command will print 4 bytes (10,11,12,13) each 500 ms.

W
wdenk 已提交
2406
		=> mwc.l 100 12345678 10
S
stroese 已提交
2407 2408
		This command will write 12345678 to address 100 all 10 ms.

W
wdenk 已提交
2409
		This only takes effect if the memory commands are activated
2410
		globally (CONFIG_CMD_MEM).
S
stroese 已提交
2411

W
wdenk 已提交
2412 2413 2414
- CONFIG_SKIP_LOWLEVEL_INIT
- CONFIG_SKIP_RELOCATE_UBOOT

W
wdenk 已提交
2415 2416 2417 2418 2419 2420 2421 2422
		[ARM only] If these variables are defined, then
		certain low level initializations (like setting up
		the memory controller) are omitted and/or U-Boot does
		not relocate itself into RAM.
		Normally these variables MUST NOT be defined. The
		only exception is when U-Boot is loaded (to RAM) by
		some other boot loader or by a debugger which
		performs these intializations itself.
W
wdenk 已提交
2423

W
wdenk 已提交
2424

W
wdenk 已提交
2425 2426 2427
Building the Software:
======================

2428 2429 2430 2431 2432 2433
Building U-Boot has been tested in several native build environments
and in many different cross environments. Of course we cannot support
all possibly existing versions of cross development tools in all
(potentially obsolete) versions. In case of tool chain problems we
recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK)
which is extensively used to build and test U-Boot.
W
wdenk 已提交
2434

2435 2436 2437 2438 2439
If you are not using a native environment, it is assumed that you
have GNU cross compiling tools available in your path. In this case,
you must set the environment variable CROSS_COMPILE in your shell.
Note that no changes to the Makefile or any other source files are
necessary. For example using the ELDK on a 4xx CPU, please enter:
W
wdenk 已提交
2440

2441 2442
	$ CROSS_COMPILE=ppc_4xx-
	$ export CROSS_COMPILE
W
wdenk 已提交
2443

2444 2445
U-Boot is intended to be simple to build. After installing the
sources you must configure U-Boot for one specific board type. This
W
wdenk 已提交
2446 2447 2448 2449
is done by typing:

	make NAME_config

2450 2451
where "NAME_config" is the name of one of the existing configu-
rations; see the main Makefile for supported names.
2452

W
wdenk 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
Note: for some board special configuration names may exist; check if
      additional information is available from the board vendor; for
      instance, the TQM823L systems are available without (standard)
      or with LCD support. You can select such additional "features"
      when chosing the configuration, i. e.

      make TQM823L_config
	- will configure for a plain TQM823L, i. e. no LCD support

      make TQM823L_LCD_config
	- will configure for a TQM823L with U-Boot console on LCD

      etc.


Finally, type "make all", and you should get some working U-Boot
images ready for download to / installation on your system:

- "u-boot.bin" is a raw binary image
- "u-boot" is an image in ELF binary format
- "u-boot.srec" is in Motorola S-Record format

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
By default the build is performed locally and the objects are saved
in the source directory. One of the two methods can be used to change
this behavior and build U-Boot to some external directory:

1. Add O= to the make command line invocations:

	make O=/tmp/build distclean
	make O=/tmp/build NAME_config
	make O=/tmp/build all

2. Set environment variable BUILD_DIR to point to the desired location:

	export BUILD_DIR=/tmp/build
	make distclean
	make NAME_config
	make all

Note that the command line "O=" setting overrides the BUILD_DIR environment
variable.

W
wdenk 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

Please be aware that the Makefiles assume you are using GNU make, so
for instance on NetBSD you might need to use "gmake" instead of
native "make".


If the system board that you have is not listed, then you will need
to port U-Boot to your hardware platform. To do this, follow these
steps:

1.  Add a new configuration option for your board to the toplevel
    "Makefile" and to the "MAKEALL" script, using the existing
    entries as examples. Note that here and at many other places
    boards and other names are listed in alphabetical sort order. Please
    keep this order.
2.  Create a new directory to hold your board specific code. Add any
    files you need. In your board directory, you will need at least
    the "Makefile", a "<board>.c", "flash.c" and "u-boot.lds".
3.  Create a new configuration file "include/configs/<board>.h" for
    your board
3.  If you're porting U-Boot to a new CPU, then also create a new
    directory to hold your CPU specific code. Add any files you need.
4.  Run "make <board>_config" with your new name.
5.  Type "make", and you should get a working "u-boot.srec" file
    to be installed on your target system.
6.  Debug and solve any problems that might arise.
    [Of course, this last step is much harder than it sounds.]


Testing of U-Boot Modifications, Ports to New Hardware, etc.:
==============================================================

2527 2528
If you have modified U-Boot sources (for instance added a new board
or support for new devices, a new CPU, etc.) you are expected to
W
wdenk 已提交
2529 2530
provide feedback to the other developers. The feedback normally takes
the form of a "patch", i. e. a context diff against a certain (latest
2531
official or latest in the git repository) version of U-Boot sources.
W
wdenk 已提交
2532

2533 2534
But before you submit such a patch, please verify that your modifi-
cation did not break existing code. At least make sure that *ALL* of
W
wdenk 已提交
2535 2536
the supported boards compile WITHOUT ANY compiler warnings. To do so,
just run the "MAKEALL" script, which will configure and build U-Boot
2537 2538 2539 2540
for ALL supported system. Be warned, this will take a while. You can
select which (cross) compiler to use by passing a `CROSS_COMPILE'
environment variable to the script, i. e. to use the ELDK cross tools
you can type
W
wdenk 已提交
2541 2542 2543 2544 2545 2546 2547

	CROSS_COMPILE=ppc_8xx- MAKEALL

or to build on a native PowerPC system you can type

	CROSS_COMPILE=' ' MAKEALL

2548 2549 2550 2551 2552 2553 2554
When using the MAKEALL script, the default behaviour is to build
U-Boot in the source directory. This location can be changed by
setting the BUILD_DIR environment variable. Also, for each target
built, the MAKEALL script saves two log files (<target>.ERR and
<target>.MAKEALL) in the <source dir>/LOG directory. This default
location can be changed by setting the MAKEALL_LOGDIR environment
variable. For example:
2555 2556 2557 2558 2559

	export BUILD_DIR=/tmp/build
	export MAKEALL_LOGDIR=/tmp/log
	CROSS_COMPILE=ppc_8xx- MAKEALL

2560 2561 2562
With the above settings build objects are saved in the /tmp/build,
log files are saved in the /tmp/log and the source tree remains clean
during the whole build process.
2563 2564


W
wdenk 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
See also "U-Boot Porting Guide" below.


Monitor Commands - Overview:
============================

go	- start application at address 'addr'
run	- run commands in an environment variable
bootm	- boot application image from memory
bootp	- boot image via network using BootP/TFTP protocol
tftpboot- boot image via network using TFTP protocol
	       and env variables "ipaddr" and "serverip"
	       (and eventually "gatewayip")
rarpboot- boot image via network using RARP/TFTP protocol
diskboot- boot from IDE devicebootd   - boot default, i.e., run 'bootcmd'
loads	- load S-Record file over serial line
loadb	- load binary file over serial line (kermit mode)
md	- memory display
mm	- memory modify (auto-incrementing)
nm	- memory modify (constant address)
mw	- memory write (fill)
cp	- memory copy
cmp	- memory compare
crc32	- checksum calculation
imd	- i2c memory display
imm	- i2c memory modify (auto-incrementing)
inm	- i2c memory modify (constant address)
imw	- i2c memory write (fill)
icrc32	- i2c checksum calculation
iprobe	- probe to discover valid I2C chip addresses
iloop	- infinite loop on address range
isdram	- print SDRAM configuration information
sspi	- SPI utility commands
base	- print or set address offset
printenv- print environment variables
setenv	- set environment variables
saveenv - save environment variables to persistent storage
protect - enable or disable FLASH write protection
erase	- erase FLASH memory
flinfo	- print FLASH memory information
bdinfo	- print Board Info structure
iminfo	- print header information for application image
coninfo - print console devices and informations
ide	- IDE sub-system
loop	- infinite loop on address range
W
wdenk 已提交
2610
loopw	- infinite write loop on address range
W
wdenk 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
mtest	- simple RAM test
icache	- enable or disable instruction cache
dcache	- enable or disable data cache
reset	- Perform RESET of the CPU
echo	- echo args to console
version - print monitor version
help	- print online help
?	- alias for 'help'


Monitor Commands - Detailed Description:
========================================

TODO.

For now: just type "help <command>".


Environment Variables:
======================

U-Boot supports user configuration using Environment Variables which
can be made persistent by saving to Flash memory.
W
wdenk 已提交
2634

W
wdenk 已提交
2635 2636 2637 2638 2639 2640
Environment Variables are set using "setenv", printed using
"printenv", and saved to Flash using "saveenv". Using "setenv"
without a value can be used to delete a variable from the
environment. As long as you don't save the environment you are
working with an in-memory copy. In case the Flash area containing the
environment is erased by accident, a default environment is provided.
W
wdenk 已提交
2641

W
wdenk 已提交
2642
Some configuration options can be set using Environment Variables:
W
wdenk 已提交
2643

W
wdenk 已提交
2644
  baudrate	- see CONFIG_BAUDRATE
W
wdenk 已提交
2645

W
wdenk 已提交
2646
  bootdelay	- see CONFIG_BOOTDELAY
W
wdenk 已提交
2647

W
wdenk 已提交
2648
  bootcmd	- see CONFIG_BOOTCOMMAND
W
wdenk 已提交
2649

W
wdenk 已提交
2650
  bootargs	- Boot arguments when booting an RTOS image
W
wdenk 已提交
2651

W
wdenk 已提交
2652
  bootfile	- Name of the image to load with TFTP
W
wdenk 已提交
2653

W
wdenk 已提交
2654 2655 2656 2657
  autoload	- if set to "no" (any string beginning with 'n'),
		  "bootp" will just load perform a lookup of the
		  configuration from the BOOTP server, but not try to
		  load any image using TFTP
W
wdenk 已提交
2658

W
wdenk 已提交
2659 2660 2661 2662
  autostart	- if set to "yes", an image loaded using the "bootp",
		  "rarpboot", "tftpboot" or "diskboot" commands will
		  be automatically started (by internally calling
		  "bootm")
2663

W
wdenk 已提交
2664 2665 2666 2667 2668
		  If set to "no", a standalone image passed to the
		  "bootm" command will be copied to the load address
		  (and eventually uncompressed), but NOT be started.
		  This can be used to load and uncompress arbitrary
		  data.
W
wdenk 已提交
2669

W
wdenk 已提交
2670 2671 2672 2673 2674 2675
  i2cfast	- (PPC405GP|PPC405EP only)
		  if set to 'y' configures Linux I2C driver for fast
		  mode (400kHZ). This environment variable is used in
		  initialization code. So, for changes to be effective
		  it must be saved and board must be reset.

W
wdenk 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
  initrd_high	- restrict positioning of initrd images:
		  If this variable is not set, initrd images will be
		  copied to the highest possible address in RAM; this
		  is usually what you want since it allows for
		  maximum initrd size. If for some reason you want to
		  make sure that the initrd image is loaded below the
		  CFG_BOOTMAPSZ limit, you can set this environment
		  variable to a value of "no" or "off" or "0".
		  Alternatively, you can set it to a maximum upper
		  address to use (U-Boot will still check that it
		  does not overwrite the U-Boot stack and data).
W
wdenk 已提交
2687

W
wdenk 已提交
2688 2689 2690 2691 2692 2693
		  For instance, when you have a system with 16 MB
		  RAM, and want to reserve 4 MB from use by Linux,
		  you can do this by adding "mem=12M" to the value of
		  the "bootargs" variable. However, now you must make
		  sure that the initrd image is placed in the first
		  12 MB as well - this can be done with
W
wdenk 已提交
2694

W
wdenk 已提交
2695
		  setenv initrd_high 00c00000
W
wdenk 已提交
2696

W
wdenk 已提交
2697 2698 2699 2700 2701 2702 2703
		  If you set initrd_high to 0xFFFFFFFF, this is an
		  indication to U-Boot that all addresses are legal
		  for the Linux kernel, including addresses in flash
		  memory. In this case U-Boot will NOT COPY the
		  ramdisk at all. This may be useful to reduce the
		  boot time on your system, but requires that this
		  feature is supported by your Linux kernel.
W
wdenk 已提交
2704

W
wdenk 已提交
2705
  ipaddr	- IP address; needed for tftpboot command
W
wdenk 已提交
2706

W
wdenk 已提交
2707 2708
  loadaddr	- Default load address for commands like "bootp",
		  "rarpboot", "tftpboot", "loadb" or "diskboot"
W
wdenk 已提交
2709

W
wdenk 已提交
2710
  loads_echo	- see CONFIG_LOADS_ECHO
2711

W
wdenk 已提交
2712
  serverip	- TFTP server IP address; needed for tftpboot command
2713

W
wdenk 已提交
2714
  bootretry	- see CONFIG_BOOT_RETRY_TIME
2715

W
wdenk 已提交
2716
  bootdelaykey	- see CONFIG_AUTOBOOT_DELAY_STR
2717

W
wdenk 已提交
2718
  bootstopkey	- see CONFIG_AUTOBOOT_STOP_STR
W
wdenk 已提交
2719

W
wdenk 已提交
2720 2721
  ethprime	- When CONFIG_NET_MULTI is enabled controls which
		  interface is used first.
W
wdenk 已提交
2722

W
wdenk 已提交
2723 2724 2725
  ethact	- When CONFIG_NET_MULTI is enabled controls which
		  interface is currently active. For example you
		  can do the following
W
wdenk 已提交
2726

W
wdenk 已提交
2727 2728 2729 2730
		  => setenv ethact FEC ETHERNET
		  => ping 192.168.0.1 # traffic sent on FEC ETHERNET
		  => setenv ethact SCC ETHERNET
		  => ping 10.0.0.1 # traffic sent on SCC ETHERNET
W
wdenk 已提交
2731

2732 2733 2734 2735
  ethrotate	- When set to "no" U-Boot does not go through all
		  available network interfaces.
		  It just stays at the currently selected interface.

W
wdenk 已提交
2736 2737 2738 2739 2740 2741 2742
   netretry	- When set to "no" each network operation will
		  either succeed or fail without retrying.
		  When set to "once" the network operation will
		  fail when all the available network interfaces
		  are tried once without success.
		  Useful on scripts which control the retry operation
		  themselves.
W
wdenk 已提交
2743

2744 2745 2746
  npe_ucode	- see CONFIG_IXP4XX_NPE_EXT_UCOD
		  if set load address for the npe microcode

2747
  tftpsrcport	- If this is set, the value is used for TFTP's
2748 2749
		  UDP source port.

2750 2751 2752
  tftpdstport	- If this is set, the value is used for TFTP's UDP
		  destination port instead of the Well Know Port 69.

W
wdenk 已提交
2753 2754 2755
   vlan		- When set to a value < 4095 the traffic over
		  ethernet is encapsulated/received over 802.1q
		  VLAN tagged frames.
W
wdenk 已提交
2756

W
wdenk 已提交
2757 2758 2759
The following environment variables may be used and automatically
updated by the network boot commands ("bootp" and "rarpboot"),
depending the information provided by your boot server:
W
wdenk 已提交
2760

W
wdenk 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769
  bootfile	- see above
  dnsip		- IP address of your Domain Name Server
  dnsip2	- IP address of your secondary Domain Name Server
  gatewayip	- IP address of the Gateway (Router) to use
  hostname	- Target hostname
  ipaddr	- see above
  netmask	- Subnet Mask
  rootpath	- Pathname of the root filesystem on the NFS server
  serverip	- see above
2770 2771


W
wdenk 已提交
2772
There are two special Environment Variables:
2773

W
wdenk 已提交
2774 2775 2776
  serial#	- contains hardware identification information such
		  as type string and/or serial number
  ethaddr	- Ethernet address
W
wdenk 已提交
2777

W
wdenk 已提交
2778 2779 2780
These variables can be set only once (usually during manufacturing of
the board). U-Boot refuses to delete or overwrite these variables
once they have been set once.
W
wdenk 已提交
2781

2782

W
wdenk 已提交
2783
Further special Environment Variables:
2784

W
wdenk 已提交
2785 2786 2787
  ver		- Contains the U-Boot version string as printed
		  with the "version" command. This variable is
		  readonly (see CONFIG_VERSION_VARIABLE).
2788 2789


W
wdenk 已提交
2790 2791
Please note that changes to some configuration parameters may take
only effect after the next boot (yes, that's just like Windoze :-).
2792 2793


W
wdenk 已提交
2794 2795
Command Line Parsing:
=====================
2796

W
wdenk 已提交
2797 2798
There are two different command line parsers available with U-Boot:
the old "simple" one, and the much more powerful "hush" shell:
W
wdenk 已提交
2799

W
wdenk 已提交
2800 2801
Old, simple command line parser:
--------------------------------
W
wdenk 已提交
2802

W
wdenk 已提交
2803 2804
- supports environment variables (through setenv / saveenv commands)
- several commands on one line, separated by ';'
2805
- variable substitution using "... ${name} ..." syntax
W
wdenk 已提交
2806 2807
- special characters ('$', ';') can be escaped by prefixing with '\',
  for example:
2808
	setenv bootcmd bootm \${address}
W
wdenk 已提交
2809 2810
- You can also escape text by enclosing in single apostrophes, for example:
	setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
W
wdenk 已提交
2811

W
wdenk 已提交
2812 2813
Hush shell:
-----------
W
wdenk 已提交
2814

W
wdenk 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
- similar to Bourne shell, with control structures like
  if...then...else...fi, for...do...done; while...do...done,
  until...do...done, ...
- supports environment ("global") variables (through setenv / saveenv
  commands) and local shell variables (through standard shell syntax
  "name=value"); only environment variables can be used with "run"
  command

General rules:
--------------
W
wdenk 已提交
2825

W
wdenk 已提交
2826 2827 2828 2829
(1) If a command line (or an environment variable executed by a "run"
    command) contains several commands separated by semicolon, and
    one of these commands fails, then the remaining commands will be
    executed anyway.
W
wdenk 已提交
2830

W
wdenk 已提交
2831 2832 2833 2834
(2) If you execute several variables with one call to run (i. e.
    calling run with a list af variables as arguments), any failing
    command will cause "run" to terminate, i. e. the remaining
    variables are not executed.
W
wdenk 已提交
2835

W
wdenk 已提交
2836 2837
Note for Redundant Ethernet Interfaces:
=======================================
W
wdenk 已提交
2838

W
wdenk 已提交
2839 2840 2841
Some boards come with redundant ethernet interfaces; U-Boot supports
such configurations and is capable of automatic selection of a
"working" interface when needed. MAC assignment works as follows:
W
wdenk 已提交
2842

W
wdenk 已提交
2843 2844 2845
Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
"eth1addr" (=>eth1), "eth2addr", ...
W
wdenk 已提交
2846

W
wdenk 已提交
2847 2848 2849 2850
If the network interface stores some valid MAC address (for instance
in SROM), this is used as default address if there is NO correspon-
ding setting in the environment; if the corresponding environment
variable is set, this overrides the settings in the card; that means:
W
wdenk 已提交
2851

W
wdenk 已提交
2852 2853
o If the SROM has a valid MAC address, and there is no address in the
  environment, the SROM's address is used.
W
wdenk 已提交
2854

W
wdenk 已提交
2855 2856 2857
o If there is no valid address in the SROM, and a definition in the
  environment exists, then the value from the environment variable is
  used.
W
wdenk 已提交
2858

W
wdenk 已提交
2859 2860
o If both the SROM and the environment contain a MAC address, and
  both addresses are the same, this MAC address is used.
W
wdenk 已提交
2861

W
wdenk 已提交
2862 2863 2864
o If both the SROM and the environment contain a MAC address, and the
  addresses differ, the value from the environment is used and a
  warning is printed.
W
wdenk 已提交
2865

W
wdenk 已提交
2866 2867
o If neither SROM nor the environment contain a MAC address, an error
  is raised.
W
wdenk 已提交
2868 2869


W
wdenk 已提交
2870 2871
Image Formats:
==============
W
wdenk 已提交
2872

W
wdenk 已提交
2873 2874 2875 2876
The "boot" commands of this monitor operate on "image" files which
can be basicly anything, preceeded by a special header; see the
definitions in include/image.h for details; basicly, the header
defines the following image properties:
W
wdenk 已提交
2877

W
wdenk 已提交
2878 2879 2880 2881
* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
  4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
  LynxOS, pSOS, QNX, RTEMS, ARTOS;
  Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS).
W
Wolfgang Denk 已提交
2882
* Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
W
wdenk 已提交
2883
  IA64, MIPS, NIOS, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
W
Wolfgang Denk 已提交
2884
  Currently supported: ARM, AVR32, Intel x86, MIPS, NIOS, PowerPC).
W
wdenk 已提交
2885 2886 2887 2888 2889
* Compression Type (uncompressed, gzip, bzip2)
* Load Address
* Entry Point
* Image Name
* Image Timestamp
W
wdenk 已提交
2890

W
wdenk 已提交
2891 2892 2893
The header is marked by a special Magic Number, and both the header
and the data portions of the image are secured against corruption by
CRC32 checksums.
W
wdenk 已提交
2894 2895


W
wdenk 已提交
2896 2897
Linux Support:
==============
W
wdenk 已提交
2898

W
wdenk 已提交
2899 2900 2901
Although U-Boot should support any OS or standalone application
easily, the main focus has always been on Linux during the design of
U-Boot.
W
wdenk 已提交
2902

W
wdenk 已提交
2903 2904 2905 2906 2907
U-Boot includes many features that so far have been part of some
special "boot loader" code within the Linux kernel. Also, any
"initrd" images to be used are no longer part of one big Linux image;
instead, kernel and "initrd" are separate images. This implementation
serves several purposes:
W
wdenk 已提交
2908

W
wdenk 已提交
2909 2910 2911
- the same features can be used for other OS or standalone
  applications (for instance: using compressed images to reduce the
  Flash memory footprint)
W
wdenk 已提交
2912

W
wdenk 已提交
2913 2914
- it becomes much easier to port new Linux kernel versions because
  lots of low-level, hardware dependent stuff are done by U-Boot
W
wdenk 已提交
2915

W
wdenk 已提交
2916 2917 2918 2919 2920 2921
- the same Linux kernel image can now be used with different "initrd"
  images; of course this also means that different kernel images can
  be run with the same "initrd". This makes testing easier (you don't
  have to build a new "zImage.initrd" Linux image when you just
  change a file in your "initrd"). Also, a field-upgrade of the
  software is easier now.
W
wdenk 已提交
2922 2923


W
wdenk 已提交
2924 2925
Linux HOWTO:
============
W
wdenk 已提交
2926

W
wdenk 已提交
2927 2928
Porting Linux to U-Boot based systems:
---------------------------------------
W
wdenk 已提交
2929

W
wdenk 已提交
2930 2931 2932 2933
U-Boot cannot save you from doing all the necessary modifications to
configure the Linux device drivers for use with your target hardware
(no, we don't intend to provide a full virtual machine interface to
Linux :-).
W
wdenk 已提交
2934

W
wdenk 已提交
2935
But now you can ignore ALL boot loader code (in arch/ppc/mbxboot).
2936

W
wdenk 已提交
2937 2938 2939 2940 2941
Just make sure your machine specific header file (for instance
include/asm-ppc/tqm8xx.h) includes the same definition of the Board
Information structure as we define in include/u-boot.h, and make
sure that your definition of IMAP_ADDR uses the same value as your
U-Boot configuration in CFG_IMMR.
2942

W
wdenk 已提交
2943

W
wdenk 已提交
2944 2945
Configuring the Linux kernel:
-----------------------------
W
wdenk 已提交
2946

W
wdenk 已提交
2947 2948 2949 2950 2951 2952
No specific requirements for U-Boot. Make sure you have some root
device (initial ramdisk, NFS) for your target system.


Building a Linux Image:
-----------------------
W
wdenk 已提交
2953

W
wdenk 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
With U-Boot, "normal" build targets like "zImage" or "bzImage" are
not used. If you use recent kernel source, a new build target
"uImage" will exist which automatically builds an image usable by
U-Boot. Most older kernels also have support for a "pImage" target,
which was introduced for our predecessor project PPCBoot and uses a
100% compatible format.

Example:

	make TQM850L_config
	make oldconfig
	make dep
	make uImage

The "uImage" build target uses a special tool (in 'tools/mkimage') to
encapsulate a compressed Linux kernel image with header	 information,
CRC32 checksum etc. for use with U-Boot. This is what we are doing:

* build a standard "vmlinux" kernel image (in ELF binary format):

* convert the kernel into a raw binary image:

	${CROSS_COMPILE}-objcopy -O binary \
				 -R .note -R .comment \
				 -S vmlinux linux.bin

* compress the binary image:

	gzip -9 linux.bin

* package compressed binary image for U-Boot:

	mkimage -A ppc -O linux -T kernel -C gzip \
		-a 0 -e 0 -n "Linux Kernel Image" \
		-d linux.bin.gz uImage
W
wdenk 已提交
2989 2990


W
wdenk 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
The "mkimage" tool can also be used to create ramdisk images for use
with U-Boot, either separated from the Linux kernel image, or
combined into one file. "mkimage" encapsulates the images with a 64
byte header containing information about target architecture,
operating system, image type, compression method, entry points, time
stamp, CRC32 checksums, etc.

"mkimage" can be called in two ways: to verify existing images and
print the header information, or to build new images.

In the first form (with "-l" option) mkimage lists the information
contained in the header of an existing U-Boot image; this includes
checksum verification:
W
wdenk 已提交
3004

W
wdenk 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	tools/mkimage -l image
	  -l ==> list image header information

The second form (with "-d" option) is used to build a U-Boot image
from a "data file" which is used as image payload:

	tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
		      -n name -d data_file image
	  -A ==> set architecture to 'arch'
	  -O ==> set operating system to 'os'
	  -T ==> set image type to 'type'
	  -C ==> set compression type 'comp'
	  -a ==> set load address to 'addr' (hex)
	  -e ==> set entry point to 'ep' (hex)
	  -n ==> set image name to 'name'
	  -d ==> use image data from 'datafile'

W
wdenk 已提交
3022 3023 3024
Right now, all Linux kernels for PowerPC systems use the same load
address (0x00000000), but the entry point address depends on the
kernel version:
W
wdenk 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117

- 2.2.x kernels have the entry point at 0x0000000C,
- 2.3.x and later kernels have the entry point at 0x00000000.

So a typical call to build a U-Boot image would read:

	-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
	> -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
	> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz \
	> examples/uImage.TQM850L
	Image Name:   2.4.4 kernel for TQM850L
	Created:      Wed Jul 19 02:34:59 2000
	Image Type:   PowerPC Linux Kernel Image (gzip compressed)
	Data Size:    335725 Bytes = 327.86 kB = 0.32 MB
	Load Address: 0x00000000
	Entry Point:  0x00000000

To verify the contents of the image (or check for corruption):

	-> tools/mkimage -l examples/uImage.TQM850L
	Image Name:   2.4.4 kernel for TQM850L
	Created:      Wed Jul 19 02:34:59 2000
	Image Type:   PowerPC Linux Kernel Image (gzip compressed)
	Data Size:    335725 Bytes = 327.86 kB = 0.32 MB
	Load Address: 0x00000000
	Entry Point:  0x00000000

NOTE: for embedded systems where boot time is critical you can trade
speed for memory and install an UNCOMPRESSED image instead: this
needs more space in Flash, but boots much faster since it does not
need to be uncompressed:

	-> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz
	-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
	> -A ppc -O linux -T kernel -C none -a 0 -e 0 \
	> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux \
	> examples/uImage.TQM850L-uncompressed
	Image Name:   2.4.4 kernel for TQM850L
	Created:      Wed Jul 19 02:34:59 2000
	Image Type:   PowerPC Linux Kernel Image (uncompressed)
	Data Size:    792160 Bytes = 773.59 kB = 0.76 MB
	Load Address: 0x00000000
	Entry Point:  0x00000000


Similar you can build U-Boot images from a 'ramdisk.image.gz' file
when your kernel is intended to use an initial ramdisk:

	-> tools/mkimage -n 'Simple Ramdisk Image' \
	> -A ppc -O linux -T ramdisk -C gzip \
	> -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
	Image Name:   Simple Ramdisk Image
	Created:      Wed Jan 12 14:01:50 2000
	Image Type:   PowerPC Linux RAMDisk Image (gzip compressed)
	Data Size:    566530 Bytes = 553.25 kB = 0.54 MB
	Load Address: 0x00000000
	Entry Point:  0x00000000


Installing a Linux Image:
-------------------------

To downloading a U-Boot image over the serial (console) interface,
you must convert the image to S-Record format:

	objcopy -I binary -O srec examples/image examples/image.srec

The 'objcopy' does not understand the information in the U-Boot
image header, so the resulting S-Record file will be relative to
address 0x00000000. To load it to a given address, you need to
specify the target address as 'offset' parameter with the 'loads'
command.

Example: install the image to address 0x40100000 (which on the
TQM8xxL is in the first Flash bank):

	=> erase 40100000 401FFFFF

	.......... done
	Erased 8 sectors

	=> loads 40100000
	## Ready for S-Record download ...
	~>examples/image.srec
	1 2 3 4 5 6 7 8 9 10 11 12 13 ...
	...
	15989 15990 15991 15992
	[file transfer complete]
	[connected]
	## Start Addr = 0x00000000


You can check the success of the download using the 'iminfo' command;
3118
this includes a checksum verification so you can be sure no data
W
wdenk 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
corruption happened:

	=> imi 40100000

	## Checking Image at 40100000 ...
	   Image Name:	 2.2.13 for initrd on TQM850L
	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
	   Data Size:	 335725 Bytes = 327 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 0000000c
	   Verifying Checksum ... OK


Boot Linux:
-----------

The "bootm" command is used to boot an application that is stored in
memory (RAM or Flash). In case of a Linux kernel image, the contents
of the "bootargs" environment variable is passed to the kernel as
parameters. You can check and modify this variable using the
"printenv" and "setenv" commands:


	=> printenv bootargs
	bootargs=root=/dev/ram

	=> setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2

	=> printenv bootargs
	bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2

	=> bootm 40020000
	## Booting Linux kernel at 40020000 ...
	   Image Name:	 2.2.13 for NFS on TQM850L
	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
	   Data Size:	 381681 Bytes = 372 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 0000000c
	   Verifying Checksum ... OK
	   Uncompressing Kernel Image ... OK
	Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
	Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
	time_init: decrementer frequency = 187500000/60
	Calibrating delay loop... 49.77 BogoMIPS
	Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
	...

If you want to boot a Linux kernel with initial ram disk, you pass
the memory addresses of both the kernel and the initrd image (PPBCOOT
format!) to the "bootm" command:

	=> imi 40100000 40200000

	## Checking Image at 40100000 ...
	   Image Name:	 2.2.13 for initrd on TQM850L
	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
	   Data Size:	 335725 Bytes = 327 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 0000000c
	   Verifying Checksum ... OK

	## Checking Image at 40200000 ...
	   Image Name:	 Simple Ramdisk Image
	   Image Type:	 PowerPC Linux RAMDisk Image (gzip compressed)
	   Data Size:	 566530 Bytes = 553 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 00000000
	   Verifying Checksum ... OK

	=> bootm 40100000 40200000
	## Booting Linux kernel at 40100000 ...
	   Image Name:	 2.2.13 for initrd on TQM850L
	   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
	   Data Size:	 335725 Bytes = 327 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 0000000c
	   Verifying Checksum ... OK
	   Uncompressing Kernel Image ... OK
	## Loading RAMDisk Image at 40200000 ...
	   Image Name:	 Simple Ramdisk Image
	   Image Type:	 PowerPC Linux RAMDisk Image (gzip compressed)
	   Data Size:	 566530 Bytes = 553 kB = 0 MB
	   Load Address: 00000000
	   Entry Point:	 00000000
	   Verifying Checksum ... OK
	   Loading Ramdisk ... OK
	Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
	Boot arguments: root=/dev/ram
	time_init: decrementer frequency = 187500000/60
	Calibrating delay loop... 49.77 BogoMIPS
	...
	RAMDISK: Compressed image found at block 0
	VFS: Mounted root (ext2 filesystem).

	bash#

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
Boot Linux and pass a flat device tree:
-----------

First, U-Boot must be compiled with the appropriate defines. See the section
titled "Linux Kernel Interface" above for a more in depth explanation. The
following is an example of how to start a kernel and pass an updated
flat device tree:

=> print oftaddr
oftaddr=0x300000
=> print oft
oft=oftrees/mpc8540ads.dtb
=> tftp $oftaddr $oft
Speed: 1000, full duplex
Using TSEC0 device
TFTP from server 192.168.1.1; our IP address is 192.168.1.101
Filename 'oftrees/mpc8540ads.dtb'.
Load address: 0x300000
Loading: #
done
Bytes transferred = 4106 (100a hex)
=> tftp $loadaddr $bootfile
Speed: 1000, full duplex
Using TSEC0 device
TFTP from server 192.168.1.1; our IP address is 192.168.1.2
Filename 'uImage'.
Load address: 0x200000
Loading:############
done
Bytes transferred = 1029407 (fb51f hex)
=> print loadaddr
loadaddr=200000
=> print oftaddr
oftaddr=0x300000
=> bootm $loadaddr - $oftaddr
## Booting image at 00200000 ...
3251 3252 3253
   Image Name:	 Linux-2.6.17-dirty
   Image Type:	 PowerPC Linux Kernel Image (gzip compressed)
   Data Size:	 1029343 Bytes = 1005.2 kB
3254
   Load Address: 00000000
3255
   Entry Point:	 00000000
3256 3257 3258 3259 3260 3261 3262 3263
   Verifying Checksum ... OK
   Uncompressing Kernel Image ... OK
Booting using flat device tree at 0x300000
Using MPC85xx ADS machine description
Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
[snip]


W
wdenk 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
More About U-Boot Image Types:
------------------------------

U-Boot supports the following image types:

   "Standalone Programs" are directly runnable in the environment
	provided by U-Boot; it is expected that (if they behave
	well) you can continue to work in U-Boot after return from
	the Standalone Program.
   "OS Kernel Images" are usually images of some Embedded OS which
	will take over control completely. Usually these programs
	will install their own set of exception handlers, device
	drivers, set up the MMU, etc. - this means, that you cannot
	expect to re-enter U-Boot except by resetting the CPU.
   "RAMDisk Images" are more or less just data blocks, and their
	parameters (address, size) are passed to an OS kernel that is
	being started.
   "Multi-File Images" contain several images, typically an OS
	(Linux) kernel image and one or more data images like
	RAMDisks. This construct is useful for instance when you want
	to boot over the network using BOOTP etc., where the boot
	server provides just a single image file, but you want to get
	for instance an OS kernel and a RAMDisk image.

	"Multi-File Images" start with a list of image sizes, each
	image size (in bytes) specified by an "uint32_t" in network
	byte order. This list is terminated by an "(uint32_t)0".
	Immediately after the terminating 0 follow the images, one by
	one, all aligned on "uint32_t" boundaries (size rounded up to
	a multiple of 4 bytes).

   "Firmware Images" are binary images containing firmware (like
	U-Boot or FPGA images) which usually will be programmed to
	flash memory.

   "Script files" are command sequences that will be executed by
	U-Boot's command interpreter; this feature is especially
	useful when you configure U-Boot to use a real shell (hush)
	as command interpreter.


Standalone HOWTO:
=================

One of the features of U-Boot is that you can dynamically load and
run "standalone" applications, which can use some resources of
U-Boot like console I/O functions or interrupt services.

Two simple examples are included with the sources:

"Hello World" Demo:
-------------------

'examples/hello_world.c' contains a small "Hello World" Demo
application; it is automatically compiled when you build U-Boot.
It's configured to run at address 0x00040004, so you can play with it
like that:

	=> loads
	## Ready for S-Record download ...
	~>examples/hello_world.srec
	1 2 3 4 5 6 7 8 9 10 11 ...
	[file transfer complete]
	[connected]
	## Start Addr = 0x00040004

	=> go 40004 Hello World! This is a test.
	## Starting application at 0x00040004 ...
	Hello World
	argc = 7
	argv[0] = "40004"
	argv[1] = "Hello"
	argv[2] = "World!"
	argv[3] = "This"
	argv[4] = "is"
	argv[5] = "a"
	argv[6] = "test."
	argv[7] = "<NULL>"
	Hit any key to exit ...

	## Application terminated, rc = 0x0

Another example, which demonstrates how to register a CPM interrupt
handler with the U-Boot code, can be found in 'examples/timer.c'.
Here, a CPM timer is set up to generate an interrupt every second.
The interrupt service routine is trivial, just printing a '.'
character, but this is just a demo program. The application can be
controlled by the following keys:

	? - print current values og the CPM Timer registers
	b - enable interrupts and start timer
	e - stop timer and disable interrupts
	q - quit application

	=> loads
	## Ready for S-Record download ...
	~>examples/timer.srec
	1 2 3 4 5 6 7 8 9 10 11 ...
	[file transfer complete]
	[connected]
	## Start Addr = 0x00040004

	=> go 40004
	## Starting application at 0x00040004 ...
	TIMERS=0xfff00980
	Using timer 1
	  tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0

Hit 'b':
	[q, b, e, ?] Set interval 1000000 us
	Enabling timer
Hit '?':
	[q, b, e, ?] ........
	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
Hit '?':
	[q, b, e, ?] .
	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
Hit '?':
	[q, b, e, ?] .
	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
Hit '?':
	[q, b, e, ?] .
	tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
Hit 'e':
	[q, b, e, ?] ...Stopping timer
Hit 'q':
	[q, b, e, ?] ## Application terminated, rc = 0x0


Minicom warning:
================

Over time, many people have reported problems when trying to use the
"minicom" terminal emulation program for serial download. I (wd)
consider minicom to be broken, and recommend not to use it. Under
Unix, I recommend to use C-Kermit for general purpose use (and
especially for kermit binary protocol download ("loadb" command), and
use "cu" for S-Record download ("loads" command).

Nevertheless, if you absolutely want to use it try adding this
configuration to your "File transfer protocols" section:

	   Name	   Program			Name U/D FullScr IO-Red. Multi
	X  kermit  /usr/bin/kermit -i -l %l -s	 Y    U	   Y	   N	  N
	Y  kermit  /usr/bin/kermit -i -l %l -r	 N    D	   Y	   N	  N


NetBSD Notes:
=============

Starting at version 0.9.2, U-Boot supports NetBSD both as host
(build U-Boot) and target system (boots NetBSD/mpc8xx).

Building requires a cross environment; it is known to work on
NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
need gmake since the Makefiles are not compatible with BSD make).
Note that the cross-powerpc package does not install include files;
attempting to build U-Boot will fail because <machine/ansi.h> is
missing.  This file has to be installed and patched manually:

	# cd /usr/pkg/cross/powerpc-netbsd/include
	# mkdir powerpc
	# ln -s powerpc machine
	# cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
	# ${EDIT} powerpc/ansi.h	## must remove __va_list, _BSD_VA_LIST

Native builds *don't* work due to incompatibilities between native
and U-Boot include files.

Booting assumes that (the first part of) the image booted is a
stage-2 loader which in turn loads and then invokes the kernel
proper. Loader sources will eventually appear in the NetBSD source
tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
W
wdenk 已提交
3437
meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
W
wdenk 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462


Implementation Internals:
=========================

The following is not intended to be a complete description of every
implementation detail. However, it should help to understand the
inner workings of U-Boot and make it easier to port it to custom
hardware.


Initial Stack, Global Data:
---------------------------

The implementation of U-Boot is complicated by the fact that U-Boot
starts running out of ROM (flash memory), usually without access to
system RAM (because the memory controller is not initialized yet).
This means that we don't have writable Data or BSS segments, and BSS
is not initialized as zero. To be able to get a C environment working
at all, we have to allocate at least a minimal stack. Implementation
options for this are defined and restricted by the CPU used: Some CPU
models provide on-chip memory (like the IMMR area on MPC8xx and
MPC826x processors), on others (parts of) the data cache can be
locked as (mis-) used as memory, etc.

3463
	Chris Hallinan posted a good summary of these issues to the
W
wdenk 已提交
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	u-boot-users mailing list:

	Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
	From: "Chris Hallinan" <clh@net1plus.com>
	Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
	...

	Correct me if I'm wrong, folks, but the way I understand it
	is this: Using DCACHE as initial RAM for Stack, etc, does not
	require any physical RAM backing up the cache. The cleverness
	is that the cache is being used as a temporary supply of
	necessary storage before the SDRAM controller is setup. It's
	beyond the scope of this list to expain the details, but you
	can see how this works by studying the cache architecture and
	operation in the architecture and processor-specific manuals.

	OCM is On Chip Memory, which I believe the 405GP has 4K. It
	is another option for the system designer to use as an
	initial stack/ram area prior to SDRAM being available. Either
	option should work for you. Using CS 4 should be fine if your
	board designers haven't used it for something that would
	cause you grief during the initial boot! It is frequently not
	used.

	CFG_INIT_RAM_ADDR should be somewhere that won't interfere
	with your processor/board/system design. The default value
	you will find in any recent u-boot distribution in
3491
	walnut.h should work for you. I'd set it to a value larger
W
wdenk 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	than your SDRAM module. If you have a 64MB SDRAM module, set
	it above 400_0000. Just make sure your board has no resources
	that are supposed to respond to that address! That code in
	start.S has been around a while and should work as is when
	you get the config right.

	-Chris Hallinan
	DS4.COM, Inc.

It is essential to remember this, since it has some impact on the C
code for the initialization procedures:

* Initialized global data (data segment) is read-only. Do not attempt
  to write it.

* Do not use any unitialized global data (or implicitely initialized
  as zero data - BSS segment) at all - this is undefined, initiali-
  zation is performed later (when relocating to RAM).

* Stack space is very limited. Avoid big data buffers or things like
  that.

Having only the stack as writable memory limits means we cannot use
normal global data to share information beween the code. But it
turned out that the implementation of U-Boot can be greatly
simplified by making a global data structure (gd_t) available to all
functions. We could pass a pointer to this data as argument to _all_
functions, but this would bloat the code. Instead we use a feature of
the GCC compiler (Global Register Variables) to share the data: we
place a pointer (gd) to the global data into a register which we
reserve for this purpose.

When choosing a register for such a purpose we are restricted by the
relevant  (E)ABI  specifications for the current architecture, and by
GCC's implementation.

For PowerPC, the following registers have specific use:
	R1:	stack pointer
3530
	R2:	reserved for system use
W
wdenk 已提交
3531 3532 3533 3534 3535 3536 3537 3538
	R3-R4:	parameter passing and return values
	R5-R10: parameter passing
	R13:	small data area pointer
	R30:	GOT pointer
	R31:	frame pointer

	(U-Boot also uses R14 as internal GOT pointer.)

3539
    ==> U-Boot will use R2 to hold a pointer to the global data
W
wdenk 已提交
3540 3541 3542 3543 3544 3545 3546 3547

    Note: on PPC, we could use a static initializer (since the
    address of the global data structure is known at compile time),
    but it turned out that reserving a register results in somewhat
    smaller code - although the code savings are not that big (on
    average for all boards 752 bytes for the whole U-Boot image,
    624 text + 127 data).

M
Mike Frysinger 已提交
3548 3549 3550 3551 3552
On Blackfin, the normal C ABI (except for P5) is followed as documented here:
	http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface

    ==> U-Boot will use P5 to hold a pointer to the global data

W
wdenk 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
On ARM, the following registers are used:

	R0:	function argument word/integer result
	R1-R3:	function argument word
	R9:	GOT pointer
	R10:	stack limit (used only if stack checking if enabled)
	R11:	argument (frame) pointer
	R12:	temporary workspace
	R13:	stack pointer
	R14:	link register
	R15:	program counter

    ==> U-Boot will use R8 to hold a pointer to the global data

3567 3568
NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
or current versions of GCC may "optimize" the code too much.
W
wdenk 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

Memory Management:
------------------

U-Boot runs in system state and uses physical addresses, i.e. the
MMU is not used either for address mapping nor for memory protection.

The available memory is mapped to fixed addresses using the memory
controller. In this process, a contiguous block is formed for each
memory type (Flash, SDRAM, SRAM), even when it consists of several
physical memory banks.

U-Boot is installed in the first 128 kB of the first Flash bank (on
TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
booting and sizing and initializing DRAM, the code relocates itself
to the upper end of DRAM. Immediately below the U-Boot code some
memory is reserved for use by malloc() [see CFG_MALLOC_LEN
configuration setting]. Below that, a structure with global Board
Info data is placed, followed by the stack (growing downward).

Additionally, some exception handler code is copied to the low 8 kB
of DRAM (0x00000000 ... 0x00001FFF).

So a typical memory configuration with 16 MB of DRAM could look like
this:

	0x0000 0000	Exception Vector code
	      :
	0x0000 1FFF
	0x0000 2000	Free for Application Use
	      :
	      :

	      :
	      :
	0x00FB FF20	Monitor Stack (Growing downward)
	0x00FB FFAC	Board Info Data and permanent copy of global data
	0x00FC 0000	Malloc Arena
	      :
	0x00FD FFFF
	0x00FE 0000	RAM Copy of Monitor Code
	...		eventually: LCD or video framebuffer
	...		eventually: pRAM (Protected RAM - unchanged by reset)
	0x00FF FFFF	[End of RAM]


System Initialization:
----------------------
W
wdenk 已提交
3617

W
wdenk 已提交
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
In the reset configuration, U-Boot starts at the reset entry point
(on most PowerPC systens at address 0x00000100). Because of the reset
configuration for CS0# this is a mirror of the onboard Flash memory.
To be able to re-map memory U-Boot then jumps to its link address.
To be able to implement the initialization code in C, a (small!)
initial stack is set up in the internal Dual Ported RAM (in case CPUs
which provide such a feature like MPC8xx or MPC8260), or in a locked
part of the data cache. After that, U-Boot initializes the CPU core,
the caches and the SIU.

Next, all (potentially) available memory banks are mapped using a
preliminary mapping. For example, we put them on 512 MB boundaries
(multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
programmed for SDRAM access. Using the temporary configuration, a
simple memory test is run that determines the size of the SDRAM
banks.

When there is more than one SDRAM bank, and the banks are of
different size, the largest is mapped first. For equal size, the first
bank (CS2#) is mapped first. The first mapping is always for address
0x00000000, with any additional banks following immediately to create
contiguous memory starting from 0.

Then, the monitor installs itself at the upper end of the SDRAM area
and allocates memory for use by malloc() and for the global Board
Info data; also, the exception vector code is copied to the low RAM
pages, and the final stack is set up.

Only after this relocation will you have a "normal" C environment;
until that you are restricted in several ways, mostly because you are
running from ROM, and because the code will have to be relocated to a
new address in RAM.


U-Boot Porting Guide:
----------------------
W
wdenk 已提交
3655

W
wdenk 已提交
3656 3657
[Based on messages by Jerry Van Baren in the U-Boot-Users mailing
list, October 2002]
W
wdenk 已提交
3658 3659


W
wdenk 已提交
3660 3661 3662
int main (int argc, char *argv[])
{
	sighandler_t no_more_time;
W
wdenk 已提交
3663

W
wdenk 已提交
3664 3665
	signal (SIGALRM, no_more_time);
	alarm (PROJECT_DEADLINE - toSec (3 * WEEK));
W
wdenk 已提交
3666

W
wdenk 已提交
3667 3668
	if (available_money > available_manpower) {
		pay consultant to port U-Boot;
W
wdenk 已提交
3669 3670 3671
		return 0;
	}

W
wdenk 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	Download latest U-Boot source;

	Subscribe to u-boot-users mailing list;

	if (clueless) {
		email ("Hi, I am new to U-Boot, how do I get started?");
	}

	while (learning) {
		Read the README file in the top level directory;
		Read http://www.denx.de/twiki/bin/view/DULG/Manual ;
		Read the source, Luke;
	}

	if (available_money > toLocalCurrency ($2500)) {
		Buy a BDI2000;
	} else {
		Add a lot of aggravation and time;
W
wdenk 已提交
3690 3691
	}

W
wdenk 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	Create your own board support subdirectory;

	Create your own board config file;

	while (!running) {
		do {
			Add / modify source code;
		} until (compiles);
		Debug;
		if (clueless)
			email ("Hi, I am having problems...");
	}
	Send patch file to Wolfgang;

	return 0;
}

void no_more_time (int sig)
{
      hire_a_guru();
}

W
wdenk 已提交
3714

W
wdenk 已提交
3715 3716
Coding Standards:
-----------------
W
wdenk 已提交
3717

W
wdenk 已提交
3718
All contributions to U-Boot should conform to the Linux kernel
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
coding style; see the file "Documentation/CodingStyle" and the script
"scripts/Lindent" in your Linux kernel source directory.  In sources
originating from U-Boot a style corresponding to "Lindent -pcs" (adding
spaces before parameters to function calls) is actually used.

Source files originating from a different project (for example the
MTD subsystem) are generally exempt from these guidelines and are not
reformated to ease subsequent migration to newer versions of those
sources.

Please note that U-Boot is implemented in C (and to some small parts in
Assembler); no C++ is used, so please do not use C++ style comments (//)
in your code.
W
wdenk 已提交
3732

W
wdenk 已提交
3733 3734 3735 3736 3737 3738
Please also stick to the following formatting rules:
- remove any trailing white space
- use TAB characters for indentation, not spaces
- make sure NOT to use DOS '\r\n' line feeds
- do not add more than 2 empty lines to source files
- do not add trailing empty lines to source files
3739

W
wdenk 已提交
3740 3741
Submissions which do not conform to the standards may be returned
with a request to reformat the changes.
W
wdenk 已提交
3742 3743


W
wdenk 已提交
3744 3745
Submitting Patches:
-------------------
W
wdenk 已提交
3746

W
wdenk 已提交
3747 3748 3749
Since the number of patches for U-Boot is growing, we need to
establish some rules. Submissions which do not conform to these rules
may be rejected, even when they contain important and valuable stuff.
W
wdenk 已提交
3750

3751
Patches shall be sent to the u-boot-users mailing list.
W
wdenk 已提交
3752

3753 3754
Please see http://www.denx.de/wiki/UBoot/Patches for details.

W
wdenk 已提交
3755 3756
When you send a patch, please include the following information with
it:
W
wdenk 已提交
3757

W
wdenk 已提交
3758 3759 3760
* For bug fixes: a description of the bug and how your patch fixes
  this bug. Please try to include a way of demonstrating that the
  patch actually fixes something.
W
wdenk 已提交
3761

W
wdenk 已提交
3762 3763
* For new features: a description of the feature and your
  implementation.
W
wdenk 已提交
3764

W
wdenk 已提交
3765
* A CHANGELOG entry as plaintext (separate from the patch)
W
wdenk 已提交
3766

W
wdenk 已提交
3767
* For major contributions, your entry to the CREDITS file
W
wdenk 已提交
3768

W
wdenk 已提交
3769 3770
* When you add support for a new board, don't forget to add this
  board to the MAKEALL script, too.
W
wdenk 已提交
3771

W
wdenk 已提交
3772 3773
* If your patch adds new configuration options, don't forget to
  document these in the README file.
W
wdenk 已提交
3774

3775 3776 3777 3778 3779 3780 3781 3782 3783
* The patch itself. If you are using git (which is *strongly*
  recommended) you can easily generate the patch using the
  "git-format-patch". If you then use "git-send-email" to send it to
  the U-Boot mailing list, you will avoid most of the common problems
  with some other mail clients.

  If you cannot use git, use "diff -purN OLD NEW". If your version of
  diff does not support these options, then get the latest version of
  GNU diff.
W
wdenk 已提交
3784

3785 3786 3787 3788
  The current directory when running this command shall be the parent
  directory of the U-Boot source tree (i. e. please make sure that
  your patch includes sufficient directory information for the
  affected files).
W
wdenk 已提交
3789

3790 3791
  We prefer patches as plain text. MIME attachments are discouraged,
  and compressed attachments must not be used.
W
wdenk 已提交
3792

W
wdenk 已提交
3793 3794
* If one logical set of modifications affects or creates several
  files, all these changes shall be submitted in a SINGLE patch file.
W
wdenk 已提交
3795

W
wdenk 已提交
3796 3797
* Changesets that contain different, unrelated modifications shall be
  submitted as SEPARATE patches, one patch per changeset.
W
wdenk 已提交
3798

W
wdenk 已提交
3799

W
wdenk 已提交
3800
Notes:
W
wdenk 已提交
3801

W
wdenk 已提交
3802 3803 3804
* Before sending the patch, run the MAKEALL script on your patched
  source tree and make sure that no errors or warnings are reported
  for any of the boards.
W
wdenk 已提交
3805

W
wdenk 已提交
3806 3807 3808
* Keep your modifications to the necessary minimum: A patch
  containing several unrelated changes or arbitrary reformats will be
  returned with a request to re-formatting / split it.
W
wdenk 已提交
3809

W
wdenk 已提交
3810 3811 3812 3813 3814 3815
* If you modify existing code, make sure that your new code does not
  add to the memory footprint of the code ;-) Small is beautiful!
  When adding new features, these should compile conditionally only
  (using #ifdef), and the resulting code with the new feature
  disabled must not need more memory than the old code without your
  modification.
3816 3817

* Remember that there is a size limit of 40 kB per message on the
3818 3819 3820
  u-boot-users mailing list. Bigger patches will be moderated. If
  they are reasonable and not bigger than 100 kB, they will be
  acknowledged. Even bigger patches should be avoided.