提交 fff926a8 编写于 作者: L linjintao

Merge branch 'ljt/rm_flops' into 'master'

Calculate FLOPs from mmcv.

See merge request open-mmlab/mmaction-lite!226
from .collect_env import collect_env
from .flops_counter import get_model_complexity_info
from .logger import get_root_logger
from .misc import get_random_string, get_shm_dir, get_thread_id
__all__ = [
'get_root_logger', 'collect_env', 'get_model_complexity_info',
'get_random_string', 'get_thread_id', 'get_shm_dir'
'get_root_logger', 'collect_env', 'get_random_string', 'get_thread_id',
'get_shm_dir'
]
# Modified from flops-counter.pytorch by Vladislav Sovrasov
# original repo: https://github.com/sovrasov/flops-counter.pytorch
# MIT License
# Copyright (c) 2018 Vladislav Sovrasov
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys
import numpy as np
import torch
import torch.nn as nn
from mmcv.utils import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd,
_BatchNorm, _ConvNd, _ConvTransposeMixin, _MaxPoolNd)
def get_model_complexity_info(model,
input_res,
print_per_layer_stat=True,
as_strings=True,
input_constructor=None,
ost=sys.stdout):
assert type(input_res) is tuple
assert len(input_res) >= 2
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
batch = torch.ones(()).new_empty(
(1, *input_res),
dtype=next(flops_model.parameters()).dtype,
device=next(flops_model.parameters()).device)
flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model, ost=ost)
flops_count = flops_model.compute_average_flops_cost()
params_count = get_model_parameters_number(flops_model)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GMac', precision=2):
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GMac'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MMac'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KMac'
else:
return str(flops) + ' Mac'
else:
if units == 'GMac':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MMac':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KMac':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' Mac'
def params_to_string(params_num):
"""converting number to string
:param float params_num: number
:returns str: number
>>> params_to_string(1e9)
'1000.0 M'
>>> params_to_string(2e5)
'200.0 k'
>>> params_to_string(3e-9)
'3e-09'
"""
if params_num // 10**6 > 0:
return str(round(params_num / 10**6, 2)) + ' M'
elif params_num // 10**3:
return str(round(params_num / 10**3, 2)) + ' k'
else:
return str(params_num)
def print_model_with_flops(model, units='GMac', precision=3, ost=sys.stdout):
total_flops = model.compute_average_flops_cost()
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([
flops_to_string(
accumulated_flops_cost, units=units, precision=precision),
f'{accumulated_flops_cost / total_flops:.3%} MACs',
self.original_extra_repr()
])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model, file=ost)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params_num
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
net_main_module.start_flops_count = start_flops_count.__get__(
net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(
net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(
net_main_module)
net_main_module.compute_average_flops_cost = \
compute_average_flops_cost.__get__(net_main_module)
net_main_module.reset_flops_count()
# Adding variables necessary for masked flops computation
net_main_module.apply(add_flops_mask_variable_or_reset)
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is
called on a desired net object.
Returns current mean flops consumption per image.
"""
batches_count = self.__batch_counter__
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
return flops_sum / batches_count
def start_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is
called on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
add_batch_counter_hook_function(self)
self.apply(add_flops_counter_hook_function)
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is
called on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
remove_batch_counter_hook_function(self)
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is
called on a desired net object.
Resets statistics computed so far.
"""
add_batch_counter_variables_or_reset(self)
self.apply(add_flops_counter_variable_or_reset)
def add_flops_mask(module, mask):
def add_flops_mask_func(module):
if isinstance(module, torch.nn.Conv2d):
module.__mask__ = mask
module.apply(add_flops_mask_func)
def remove_flops_mask(module):
module.apply(add_flops_mask_variable_or_reset)
def is_supported_instance(module):
for mod in hook_mapping:
if issubclass(type(module), mod):
return True
return False
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
def linear_flops_counter_hook(module, input, output):
input = input[0]
batch_size = input.shape[0]
module.__flops__ += int(batch_size * input.shape[1] * output.shape[1])
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def bn_flops_counter_hook(module, input, output):
input = input[0]
batch_flops = np.prod(input.shape)
if module.affine:
batch_flops *= 2
module.__flops__ += int(batch_flops)
def gn_flops_counter_hook(module, input, output):
elems = np.prod(input[0].shape)
# there is no precise FLOPs estimation of computing mean and variance,
# and we just set it 2 * elems: half muladds for computing
# means and half for computing vars
batch_flops = 3 * elems
if module.affine:
batch_flops += elems
module.__flops__ += int(batch_flops)
def deconv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
input_height, input_width = input.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = (
kernel_height * kernel_width * in_channels * filters_per_channel)
active_elements_count = batch_size * input_height * input_width
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
output_height, output_width = output.shape[2:]
bias_flops = out_channels * batch_size * output_height * output_height
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = np.prod(
kernel_dims) * in_channels * filters_per_channel
active_elements_count = batch_size * np.prod(output_dims)
if conv_module.__mask__ is not None:
# (b, 1, h, w)
output_height, output_width = output.shape[2:]
flops_mask = conv_module.__mask__.expand(batch_size, 1, output_height,
output_width)
active_elements_count = flops_mask.sum()
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
bias_flops = out_channels * active_elements_count
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += int(overall_flops)
hook_mapping = {
# conv
_ConvNd: conv_flops_counter_hook,
# deconv
_ConvTransposeMixin: deconv_flops_counter_hook,
# fc
nn.Linear: linear_flops_counter_hook,
# pooling
_AvgPoolNd: pool_flops_counter_hook,
_MaxPoolNd: pool_flops_counter_hook,
_AdaptiveAvgPoolNd: pool_flops_counter_hook,
_AdaptiveMaxPoolNd: pool_flops_counter_hook,
# activation
nn.ReLU: relu_flops_counter_hook,
nn.PReLU: relu_flops_counter_hook,
nn.ELU: relu_flops_counter_hook,
nn.LeakyReLU: relu_flops_counter_hook,
nn.ReLU6: relu_flops_counter_hook,
# normalization
_BatchNorm: bn_flops_counter_hook,
nn.GroupNorm: gn_flops_counter_hook,
# upsample
nn.Upsample: upsample_flops_counter_hook,
}
def batch_counter_hook(module, input, output):
batch_size = 1
if len(input) > 0:
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = len(input)
else:
print('Warning! No positional inputs found for a module, '
'assuming batch size is 1.')
module.__batch_counter__ += batch_size
def add_batch_counter_variables_or_reset(module):
module.__batch_counter__ = 0
def add_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
return
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def remove_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
module.__batch_counter_handle__.remove()
del module.__batch_counter_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
module.__flops__ = 0
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
for mod_type, counter_hook in hook_mapping.items():
if issubclass(type(module), mod_type):
handle = module.register_forward_hook(counter_hook)
break
module.__flops_handle__ = handle
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
# --- Masked flops counting
# Also being run in the initialization
def add_flops_mask_variable_or_reset(module):
if is_supported_instance(module):
module.__mask__ = None
import argparse
from mmcv import Config
from mmcv.cnn import get_model_complexity_info
from mmaction.models import build_recognizer
from mmaction.utils import get_model_complexity_info
def parse_args():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册