flops_counter.py 13.9 KB
Newer Older
L
linjintao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
# Modified from flops-counter.pytorch by Vladislav Sovrasov
# original repo: https://github.com/sovrasov/flops-counter.pytorch

# MIT License

# Copyright (c) 2018 Vladislav Sovrasov

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import sys

import numpy as np
import torch
import torch.nn as nn
from mmcv.utils import (_AdaptiveAvgPoolNd, _AdaptiveMaxPoolNd, _AvgPoolNd,
                        _BatchNorm, _ConvNd, _ConvTransposeMixin, _MaxPoolNd)


def get_model_complexity_info(model,
                              input_res,
                              print_per_layer_stat=True,
                              as_strings=True,
                              input_constructor=None,
                              ost=sys.stdout):
    assert type(input_res) is tuple
    assert len(input_res) >= 2
    flops_model = add_flops_counting_methods(model)
    flops_model.eval().start_flops_count()
    if input_constructor:
        input = input_constructor(input_res)
        _ = flops_model(**input)
    else:
        batch = torch.ones(()).new_empty(
            (1, *input_res),
            dtype=next(flops_model.parameters()).dtype,
            device=next(flops_model.parameters()).device)
        flops_model(batch)

    if print_per_layer_stat:
        print_model_with_flops(flops_model, ost=ost)
    flops_count = flops_model.compute_average_flops_cost()
    params_count = get_model_parameters_number(flops_model)
    flops_model.stop_flops_count()

    if as_strings:
        return flops_to_string(flops_count), params_to_string(params_count)

    return flops_count, params_count


def flops_to_string(flops, units='GMac', precision=2):
    if units is None:
        if flops // 10**9 > 0:
            return str(round(flops / 10.**9, precision)) + ' GMac'
        elif flops // 10**6 > 0:
            return str(round(flops / 10.**6, precision)) + ' MMac'
        elif flops // 10**3 > 0:
            return str(round(flops / 10.**3, precision)) + ' KMac'
        else:
            return str(flops) + ' Mac'
    else:
        if units == 'GMac':
            return str(round(flops / 10.**9, precision)) + ' ' + units
        elif units == 'MMac':
            return str(round(flops / 10.**6, precision)) + ' ' + units
        elif units == 'KMac':
            return str(round(flops / 10.**3, precision)) + ' ' + units
        else:
            return str(flops) + ' Mac'


def params_to_string(params_num):
    """converting number to string

    :param float params_num: number
    :returns str: number

    >>> params_to_string(1e9)
    '1000.0 M'
    >>> params_to_string(2e5)
    '200.0 k'
    >>> params_to_string(3e-9)
    '3e-09'
    """
    if params_num // 10**6 > 0:
        return str(round(params_num / 10**6, 2)) + ' M'
    elif params_num // 10**3:
        return str(round(params_num / 10**3, 2)) + ' k'
    else:
        return str(params_num)


def print_model_with_flops(model, units='GMac', precision=3, ost=sys.stdout):
    total_flops = model.compute_average_flops_cost()

    def accumulate_flops(self):
        if is_supported_instance(self):
            return self.__flops__ / model.__batch_counter__
        else:
            sum = 0
            for m in self.children():
                sum += m.accumulate_flops()
            return sum

    def flops_repr(self):
        accumulated_flops_cost = self.accumulate_flops()
        return ', '.join([
            flops_to_string(
                accumulated_flops_cost, units=units, precision=precision),
            f'{accumulated_flops_cost / total_flops:.3%} MACs',
            self.original_extra_repr()
        ])

    def add_extra_repr(m):
        m.accumulate_flops = accumulate_flops.__get__(m)
        flops_extra_repr = flops_repr.__get__(m)
        if m.extra_repr != flops_extra_repr:
            m.original_extra_repr = m.extra_repr
            m.extra_repr = flops_extra_repr
            assert m.extra_repr != m.original_extra_repr

    def del_extra_repr(m):
        if hasattr(m, 'original_extra_repr'):
            m.extra_repr = m.original_extra_repr
            del m.original_extra_repr
        if hasattr(m, 'accumulate_flops'):
            del m.accumulate_flops

    model.apply(add_extra_repr)
    print(model, file=ost)
    model.apply(del_extra_repr)


def get_model_parameters_number(model):
    params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
    return params_num


def add_flops_counting_methods(net_main_module):
    # adding additional methods to the existing module object,
    # this is done this way so that each function has access to self object
    net_main_module.start_flops_count = start_flops_count.__get__(
        net_main_module)
    net_main_module.stop_flops_count = stop_flops_count.__get__(
        net_main_module)
    net_main_module.reset_flops_count = reset_flops_count.__get__(
        net_main_module)
    net_main_module.compute_average_flops_cost = \
        compute_average_flops_cost.__get__(net_main_module)

    net_main_module.reset_flops_count()

    # Adding variables necessary for masked flops computation
    net_main_module.apply(add_flops_mask_variable_or_reset)

    return net_main_module


def compute_average_flops_cost(self):
    """
    A method that will be available after add_flops_counting_methods() is
    called on a desired net object.
    Returns current mean flops consumption per image.
    """

    batches_count = self.__batch_counter__
    flops_sum = 0
    for module in self.modules():
        if is_supported_instance(module):
            flops_sum += module.__flops__

    return flops_sum / batches_count


def start_flops_count(self):
    """
    A method that will be available after add_flops_counting_methods() is
    called on a desired net object.
    Activates the computation of mean flops consumption per image.
    Call it before you run the network.
    """
    add_batch_counter_hook_function(self)
    self.apply(add_flops_counter_hook_function)


def stop_flops_count(self):
    """
    A method that will be available after add_flops_counting_methods() is
    called on a desired net object.
    Stops computing the mean flops consumption per image.
    Call whenever you want to pause the computation.
    """
    remove_batch_counter_hook_function(self)
    self.apply(remove_flops_counter_hook_function)


def reset_flops_count(self):
    """
    A method that will be available after add_flops_counting_methods() is
    called on a desired net object.
    Resets statistics computed so far.
    """
    add_batch_counter_variables_or_reset(self)
    self.apply(add_flops_counter_variable_or_reset)


def add_flops_mask(module, mask):

    def add_flops_mask_func(module):
        if isinstance(module, torch.nn.Conv2d):
            module.__mask__ = mask

    module.apply(add_flops_mask_func)


def remove_flops_mask(module):
    module.apply(add_flops_mask_variable_or_reset)


def is_supported_instance(module):
    for mod in hook_mapping:
        if issubclass(type(module), mod):
            return True
    return False


def empty_flops_counter_hook(module, input, output):
    module.__flops__ += 0


def upsample_flops_counter_hook(module, input, output):
    output_size = output[0]
    batch_size = output_size.shape[0]
    output_elements_count = batch_size
    for val in output_size.shape[1:]:
        output_elements_count *= val
    module.__flops__ += int(output_elements_count)


def relu_flops_counter_hook(module, input, output):
    active_elements_count = output.numel()
    module.__flops__ += int(active_elements_count)


def linear_flops_counter_hook(module, input, output):
    input = input[0]
    batch_size = input.shape[0]
    module.__flops__ += int(batch_size * input.shape[1] * output.shape[1])


def pool_flops_counter_hook(module, input, output):
    input = input[0]
    module.__flops__ += int(np.prod(input.shape))


def bn_flops_counter_hook(module, input, output):
    input = input[0]

    batch_flops = np.prod(input.shape)
    if module.affine:
        batch_flops *= 2
    module.__flops__ += int(batch_flops)


def gn_flops_counter_hook(module, input, output):
    elems = np.prod(input[0].shape)
    # there is no precise FLOPs estimation of computing mean and variance,
    # and we just set it 2 * elems: half muladds for computing
    # means and half for computing vars
    batch_flops = 3 * elems
    if module.affine:
        batch_flops += elems
    module.__flops__ += int(batch_flops)


def deconv_flops_counter_hook(conv_module, input, output):
    # Can have multiple inputs, getting the first one
    input = input[0]

    batch_size = input.shape[0]
    input_height, input_width = input.shape[2:]

    kernel_height, kernel_width = conv_module.kernel_size
    in_channels = conv_module.in_channels
    out_channels = conv_module.out_channels
    groups = conv_module.groups

    filters_per_channel = out_channels // groups
    conv_per_position_flops = (
        kernel_height * kernel_width * in_channels * filters_per_channel)

    active_elements_count = batch_size * input_height * input_width
    overall_conv_flops = conv_per_position_flops * active_elements_count
    bias_flops = 0
    if conv_module.bias is not None:
        output_height, output_width = output.shape[2:]
        bias_flops = out_channels * batch_size * output_height * output_height
    overall_flops = overall_conv_flops + bias_flops

    conv_module.__flops__ += int(overall_flops)


def conv_flops_counter_hook(conv_module, input, output):
    # Can have multiple inputs, getting the first one
    input = input[0]

    batch_size = input.shape[0]
    output_dims = list(output.shape[2:])

    kernel_dims = list(conv_module.kernel_size)
    in_channels = conv_module.in_channels
    out_channels = conv_module.out_channels
    groups = conv_module.groups

    filters_per_channel = out_channels // groups
    conv_per_position_flops = np.prod(
        kernel_dims) * in_channels * filters_per_channel

    active_elements_count = batch_size * np.prod(output_dims)

    if conv_module.__mask__ is not None:
        # (b, 1, h, w)
        output_height, output_width = output.shape[2:]
        flops_mask = conv_module.__mask__.expand(batch_size, 1, output_height,
                                                 output_width)
        active_elements_count = flops_mask.sum()

    overall_conv_flops = conv_per_position_flops * active_elements_count

    bias_flops = 0

    if conv_module.bias is not None:

        bias_flops = out_channels * active_elements_count

    overall_flops = overall_conv_flops + bias_flops

    conv_module.__flops__ += int(overall_flops)


hook_mapping = {
    # conv
    _ConvNd: conv_flops_counter_hook,
    # deconv
    _ConvTransposeMixin: deconv_flops_counter_hook,
    # fc
    nn.Linear: linear_flops_counter_hook,
    # pooling
    _AvgPoolNd: pool_flops_counter_hook,
    _MaxPoolNd: pool_flops_counter_hook,
    _AdaptiveAvgPoolNd: pool_flops_counter_hook,
    _AdaptiveMaxPoolNd: pool_flops_counter_hook,
    # activation
    nn.ReLU: relu_flops_counter_hook,
    nn.PReLU: relu_flops_counter_hook,
    nn.ELU: relu_flops_counter_hook,
    nn.LeakyReLU: relu_flops_counter_hook,
    nn.ReLU6: relu_flops_counter_hook,
    # normalization
    _BatchNorm: bn_flops_counter_hook,
    nn.GroupNorm: gn_flops_counter_hook,
    # upsample
    nn.Upsample: upsample_flops_counter_hook,
}


def batch_counter_hook(module, input, output):
    batch_size = 1
    if len(input) > 0:
        # Can have multiple inputs, getting the first one
        input = input[0]
        batch_size = len(input)
    else:
        print('Warning! No positional inputs found for a module, '
              'assuming batch size is 1.')
    module.__batch_counter__ += batch_size


def add_batch_counter_variables_or_reset(module):
    module.__batch_counter__ = 0


def add_batch_counter_hook_function(module):
    if hasattr(module, '__batch_counter_handle__'):
        return

    handle = module.register_forward_hook(batch_counter_hook)
    module.__batch_counter_handle__ = handle


def remove_batch_counter_hook_function(module):
    if hasattr(module, '__batch_counter_handle__'):
        module.__batch_counter_handle__.remove()
        del module.__batch_counter_handle__


def add_flops_counter_variable_or_reset(module):
    if is_supported_instance(module):
        module.__flops__ = 0


def add_flops_counter_hook_function(module):
    if is_supported_instance(module):
        if hasattr(module, '__flops_handle__'):
            return

        for mod_type, counter_hook in hook_mapping.items():
            if issubclass(type(module), mod_type):
                handle = module.register_forward_hook(counter_hook)
                break

        module.__flops_handle__ = handle


def remove_flops_counter_hook_function(module):
    if is_supported_instance(module):
        if hasattr(module, '__flops_handle__'):
            module.__flops_handle__.remove()
            del module.__flops_handle__


# --- Masked flops counting
# Also being run in the initialization
def add_flops_mask_variable_or_reset(module):
    if is_supported_instance(module):
        module.__mask__ = None