infcover.c 24.1 KB
Newer Older
1
/* infcover.c -- test zlib's inflate routines with full code coverage
M
Mark Adler 已提交
2
 * Copyright (C) 2011, 2016 Mark Adler
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/* to use, do: ./configure --cover && make cover */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "zlib.h"

/* get definition of internal structure so we can mess with it (see pull()),
   and so we can call inflate_trees() (see cover5()) */
#define ZLIB_INTERNAL
#include "inftrees.h"
#include "inflate.h"

#define local static

/* -- memory tracking routines -- */

/*
   These memory tracking routines are provided to zlib and track all of zlib's
   allocations and deallocations, check for LIFO operations, keep a current
   and high water mark of total bytes requested, optionally set a limit on the
   total memory that can be allocated, and when done check for memory leaks.

   They are used as follows:

   z_stream strm;
   mem_setup(&strm)         initializes the memory tracking and sets the
                            zalloc, zfree, and opaque members of strm to use
                            memory tracking for all zlib operations on strm
   mem_limit(&strm, limit)  sets a limit on the total bytes requested -- a
                            request that exceeds this limit will result in an
                            allocation failure (returns NULL) -- setting the
                            limit to zero means no limit, which is the default
                            after mem_setup()
   mem_used(&strm, "msg")   prints to stderr "msg" and the total bytes used
   mem_high(&strm, "msg")   prints to stderr "msg" and the high water mark
   mem_done(&strm, "msg")   ends memory tracking, releases all allocations
                            for the tracking as well as leaked zlib blocks, if
                            any.  If there was anything unusual, such as leaked
                            blocks, non-FIFO frees, or frees of addresses not
                            allocated, then "msg" and information about the
                            problem is printed to stderr.  If everything is
                            normal, nothing is printed. mem_done resets the
                            strm members to Z_NULL to use the default memory
                            allocation routines on the next zlib initialization
                            using strm.
 */

/* these items are strung together in a linked list, one for each allocation */
struct mem_item {
    void *ptr;                  /* pointer to allocated memory */
    size_t size;                /* requested size of allocation */
    struct mem_item *next;      /* pointer to next item in list, or NULL */
};

/* this structure is at the root of the linked list, and tracks statistics */
struct mem_zone {
    struct mem_item *first;     /* pointer to first item in list, or NULL */
    size_t total, highwater;    /* total allocations, and largest total */
    size_t limit;               /* memory allocation limit, or 0 if no limit */
    int notlifo, rogue;         /* counts of non-LIFO frees and rogue frees */
};

/* memory allocation routine to pass to zlib */
local void *mem_alloc(void *mem, unsigned count, unsigned size)
{
    void *ptr;
    struct mem_item *item;
    struct mem_zone *zone = mem;
    size_t len = count * (size_t)size;

    /* induced allocation failure */
    if (zone == NULL || (zone->limit && zone->total + len > zone->limit))
        return NULL;

    /* perform allocation using the standard library, fill memory with a
       non-zero value to make sure that the code isn't depending on zeros */
    ptr = malloc(len);
    if (ptr == NULL)
        return NULL;
    memset(ptr, 0xa5, len);

    /* create a new item for the list */
    item = malloc(sizeof(struct mem_item));
    if (item == NULL) {
        free(ptr);
        return NULL;
    }
    item->ptr = ptr;
    item->size = len;

    /* insert item at the beginning of the list */
    item->next = zone->first;
    zone->first = item;

    /* update the statistics */
    zone->total += item->size;
    if (zone->total > zone->highwater)
        zone->highwater = zone->total;

    /* return the allocated memory */
    return ptr;
}

/* memory free routine to pass to zlib */
local void mem_free(void *mem, void *ptr)
{
    struct mem_item *item, *next;
    struct mem_zone *zone = mem;

    /* if no zone, just do a free */
    if (zone == NULL) {
        free(ptr);
        return;
    }

    /* point next to the item that matches ptr, or NULL if not found -- remove
       the item from the linked list if found */
    next = zone->first;
    if (next) {
        if (next->ptr == ptr)
            zone->first = next->next;   /* first one is it, remove from list */
        else {
            do {                        /* search the linked list */
                item = next;
                next = item->next;
            } while (next != NULL && next->ptr != ptr);
            if (next) {                 /* if found, remove from linked list */
                item->next = next->next;
                zone->notlifo++;        /* not a LIFO free */
            }

        }
    }

    /* if found, update the statistics and free the item */
    if (next) {
        zone->total -= next->size;
        free(next);
    }

    /* if not found, update the rogue count */
    else
        zone->rogue++;

    /* in any case, do the requested free with the standard library function */
    free(ptr);
}

/* set up a controlled memory allocation space for monitoring, set the stream
   parameters to the controlled routines, with opaque pointing to the space */
local void mem_setup(z_stream *strm)
{
    struct mem_zone *zone;

    zone = malloc(sizeof(struct mem_zone));
    assert(zone != NULL);
    zone->first = NULL;
    zone->total = 0;
    zone->highwater = 0;
    zone->limit = 0;
    zone->notlifo = 0;
    zone->rogue = 0;
    strm->opaque = zone;
    strm->zalloc = mem_alloc;
    strm->zfree = mem_free;
}

/* set a limit on the total memory allocation, or 0 to remove the limit */
local void mem_limit(z_stream *strm, size_t limit)
{
    struct mem_zone *zone = strm->opaque;

    zone->limit = limit;
}

/* show the current total requested allocations in bytes */
local void mem_used(z_stream *strm, char *prefix)
{
    struct mem_zone *zone = strm->opaque;

    fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total);
}

/* show the high water allocation in bytes */
local void mem_high(z_stream *strm, char *prefix)
{
    struct mem_zone *zone = strm->opaque;

    fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater);
}

/* release the memory allocation zone -- if there are any surprises, notify */
local void mem_done(z_stream *strm, char *prefix)
{
    int count = 0;
    struct mem_item *item, *next;
    struct mem_zone *zone = strm->opaque;

    /* show high water mark */
    mem_high(strm, prefix);

    /* free leftover allocations and item structures, if any */
    item = zone->first;
    while (item != NULL) {
        free(item->ptr);
        next = item->next;
        free(item);
        item = next;
        count++;
    }

    /* issue alerts about anything unexpected */
    if (count || zone->total)
        fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n",
                prefix, zone->total, count);
    if (zone->notlifo)
        fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo);
    if (zone->rogue)
        fprintf(stderr, "** %s: %d frees not recognized\n",
                prefix, zone->rogue);

    /* free the zone and delete from the stream */
    free(zone);
    strm->opaque = Z_NULL;
    strm->zalloc = Z_NULL;
    strm->zfree = Z_NULL;
}

/* -- inflate test routines -- */

/* Decode a hexadecimal string, set *len to length, in[] to the bytes.  This
   decodes liberally, in that hex digits can be adjacent, in which case two in
240 241 242 243 244
   a row writes a byte.  Or they can be delimited by any non-hex character,
   where the delimiters are ignored except when a single hex digit is followed
   by a delimiter, where that single digit writes a byte.  The returned data is
   allocated and must eventually be freed.  NULL is returned if out of memory.
   If the length is not needed, then len can be NULL. */
245 246
local unsigned char *h2b(const char *hex, unsigned *len)
{
247
    unsigned char *in, *re;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    unsigned next, val;

    in = malloc((strlen(hex) + 1) >> 1);
    if (in == NULL)
        return NULL;
    next = 0;
    val = 1;
    do {
        if (*hex >= '0' && *hex <= '9')
            val = (val << 4) + *hex - '0';
        else if (*hex >= 'A' && *hex <= 'F')
            val = (val << 4) + *hex - 'A' + 10;
        else if (*hex >= 'a' && *hex <= 'f')
            val = (val << 4) + *hex - 'a' + 10;
        else if (val != 1 && val < 32)  /* one digit followed by delimiter */
            val += 240;                 /* make it look like two digits */
        if (val > 255) {                /* have two digits */
            in[next++] = val & 0xff;    /* save the decoded byte */
            val = 1;                    /* start over */
        }
    } while (*hex++);       /* go through the loop with the terminating null */
    if (len != NULL)
        *len = next;
271 272
    re = realloc(in, next);
    return re == NULL ? in : re;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
}

/* generic inflate() run, where hex is the hexadecimal input data, what is the
   text to include in an error message, step is how much input data to feed
   inflate() on each call, or zero to feed it all, win is the window bits
   parameter to inflateInit2(), len is the size of the output buffer, and err
   is the error code expected from the first inflate() call (the second
   inflate() call is expected to return Z_STREAM_END).  If win is 47, then
   header information is collected with inflateGetHeader().  If a zlib stream
   is looking for a dictionary, then an empty dictionary is provided.
   inflate() is run until all of the input data is consumed. */
local void inf(char *hex, char *what, unsigned step, int win, unsigned len,
               int err)
{
    int ret;
    unsigned have;
    unsigned char *in, *out;
    z_stream strm, copy;
    gz_header head;

    mem_setup(&strm);
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit2(&strm, win);
    if (ret != Z_OK) {
        mem_done(&strm, what);
        return;
    }
    out = malloc(len);                          assert(out != NULL);
    if (win == 47) {
        head.extra = out;
        head.extra_max = len;
        head.name = out;
        head.name_max = len;
        head.comment = out;
        head.comm_max = len;
        ret = inflateGetHeader(&strm, &head);   assert(ret == Z_OK);
    }
    in = h2b(hex, &have);                       assert(in != NULL);
    if (step == 0 || step > have)
        step = have;
    strm.avail_in = step;
    have -= step;
    strm.next_in = in;
    do {
        strm.avail_out = len;
        strm.next_out = out;
        ret = inflate(&strm, Z_NO_FLUSH);       assert(err == 9 || ret == err);
        if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT)
            break;
        if (ret == Z_NEED_DICT) {
            ret = inflateSetDictionary(&strm, in, 1);
                                                assert(ret == Z_DATA_ERROR);
            mem_limit(&strm, 1);
            ret = inflateSetDictionary(&strm, out, 0);
                                                assert(ret == Z_MEM_ERROR);
            mem_limit(&strm, 0);
            ((struct inflate_state *)strm.state)->mode = DICT;
            ret = inflateSetDictionary(&strm, out, 0);
                                                assert(ret == Z_OK);
            ret = inflate(&strm, Z_NO_FLUSH);   assert(ret == Z_BUF_ERROR);
        }
        ret = inflateCopy(&copy, &strm);        assert(ret == Z_OK);
        ret = inflateEnd(&copy);                assert(ret == Z_OK);
        err = 9;                        /* don't care next time around */
        have += strm.avail_in;
        strm.avail_in = step > have ? have : step;
        have -= strm.avail_in;
    } while (strm.avail_in);
    free(in);
    free(out);
    ret = inflateReset2(&strm, -8);             assert(ret == Z_OK);
    ret = inflateEnd(&strm);                    assert(ret == Z_OK);
    mem_done(&strm, what);
}

/* cover all of the lines in inflate.c up to inflate() */
local void cover_support(void)
{
    int ret;
    z_stream strm;

    mem_setup(&strm);
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit(&strm);                   assert(ret == Z_OK);
    mem_used(&strm, "inflate init");
    ret = inflatePrime(&strm, 5, 31);           assert(ret == Z_OK);
    ret = inflatePrime(&strm, -1, 0);           assert(ret == Z_OK);
    ret = inflateSetDictionary(&strm, Z_NULL, 0);
                                                assert(ret == Z_STREAM_ERROR);
    ret = inflateEnd(&strm);                    assert(ret == Z_OK);
    mem_done(&strm, "prime");

    inf("63 0", "force window allocation", 0, -15, 1, Z_OK);
    inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK);
    inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK);
    inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END);
    inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR);

    mem_setup(&strm);
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream));
                                                assert(ret == Z_VERSION_ERROR);
    mem_done(&strm, "wrong version");

    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit(&strm);                   assert(ret == Z_OK);
    ret = inflateEnd(&strm);                    assert(ret == Z_OK);
    fputs("inflate built-in memory routines\n", stderr);
}

/* cover all inflate() header and trailer cases and code after inflate() */
local void cover_wrap(void)
{
    int ret;
    z_stream strm, copy;
    unsigned char dict[257];

    ret = inflate(Z_NULL, 0);                   assert(ret == Z_STREAM_ERROR);
    ret = inflateEnd(Z_NULL);                   assert(ret == Z_STREAM_ERROR);
    ret = inflateCopy(Z_NULL, Z_NULL);          assert(ret == Z_STREAM_ERROR);
    fputs("inflate bad parameters\n", stderr);

    inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR);
    inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR);
    inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR);
    inf("8 99", "set window size from header", 0, 0, 0, Z_OK);
    inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR);
    inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END);
    inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1,
        Z_DATA_ERROR);
    inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length",
        0, 47, 0, Z_STREAM_END);
    inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR);
    inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT);
    inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK);

    mem_setup(&strm);
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit2(&strm, -8);
    strm.avail_in = 2;
    strm.next_in = (void *)"\x63";
    strm.avail_out = 1;
    strm.next_out = (void *)&ret;
    mem_limit(&strm, 1);
    ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR);
    ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR);
    mem_limit(&strm, 0);
    memset(dict, 0, 257);
    ret = inflateSetDictionary(&strm, dict, 257);
                                                assert(ret == Z_OK);
    mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256);
    ret = inflatePrime(&strm, 16, 0);           assert(ret == Z_OK);
    strm.avail_in = 2;
    strm.next_in = (void *)"\x80";
    ret = inflateSync(&strm);                   assert(ret == Z_DATA_ERROR);
    ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_STREAM_ERROR);
    strm.avail_in = 4;
    strm.next_in = (void *)"\0\0\xff\xff";
    ret = inflateSync(&strm);                   assert(ret == Z_OK);
    (void)inflateSyncPoint(&strm);
    ret = inflateCopy(&copy, &strm);            assert(ret == Z_MEM_ERROR);
    mem_limit(&strm, 0);
    ret = inflateUndermine(&strm, 1);           assert(ret == Z_DATA_ERROR);
    (void)inflateMark(&strm);
    ret = inflateEnd(&strm);                    assert(ret == Z_OK);
    mem_done(&strm, "miscellaneous, force memory errors");
}

/* input and output functions for inflateBack() */
local unsigned pull(void *desc, unsigned char **buf)
{
    static unsigned int next = 0;
    static unsigned char dat[] = {0x63, 0, 2, 0};
    struct inflate_state *state;

    if (desc == Z_NULL) {
        next = 0;
        return 0;   /* no input (already provided at next_in) */
    }
    state = (void *)((z_stream *)desc)->state;
    if (state != Z_NULL)
        state->mode = SYNC;     /* force an otherwise impossible situation */
    return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0;
}

local int push(void *desc, unsigned char *buf, unsigned len)
{
    buf += len;
    return desc != Z_NULL;      /* force error if desc not null */
}

/* cover inflateBack() up to common deflate data cases and after those */
local void cover_back(void)
{
    int ret;
    z_stream strm;
    unsigned char win[32768];

    ret = inflateBackInit_(Z_NULL, 0, win, 0, 0);
                                                assert(ret == Z_VERSION_ERROR);
    ret = inflateBackInit(Z_NULL, 0, win);      assert(ret == Z_STREAM_ERROR);
    ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL);
                                                assert(ret == Z_STREAM_ERROR);
    ret = inflateBackEnd(Z_NULL);               assert(ret == Z_STREAM_ERROR);
    fputs("inflateBack bad parameters\n", stderr);

    mem_setup(&strm);
    ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK);
    strm.avail_in = 2;
    strm.next_in = (void *)"\x03";
    ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
                                                assert(ret == Z_STREAM_END);
        /* force output error */
    strm.avail_in = 3;
    strm.next_in = (void *)"\x63\x00";
    ret = inflateBack(&strm, pull, Z_NULL, push, &strm);
                                                assert(ret == Z_BUF_ERROR);
        /* force mode error by mucking with state */
    ret = inflateBack(&strm, pull, &strm, push, Z_NULL);
                                                assert(ret == Z_STREAM_ERROR);
    ret = inflateBackEnd(&strm);                assert(ret == Z_OK);
    mem_done(&strm, "inflateBack bad state");

    ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK);
    ret = inflateBackEnd(&strm);                assert(ret == Z_OK);
    fputs("inflateBack built-in memory routines\n", stderr);
}

/* do a raw inflate of data in hexadecimal with both inflate and inflateBack */
local int try(char *hex, char *id, int err)
{
    int ret;
    unsigned len, size;
    unsigned char *in, *out, *win;
    char *prefix;
    z_stream strm;

    /* convert to hex */
    in = h2b(hex, &len);
    assert(in != NULL);

    /* allocate work areas */
    size = len << 3;
    out = malloc(size);
    assert(out != NULL);
    win = malloc(32768);
    assert(win != NULL);
    prefix = malloc(strlen(id) + 6);
    assert(prefix != NULL);

    /* first with inflate */
    strcpy(prefix, id);
    strcat(prefix, "-late");
    mem_setup(&strm);
    strm.avail_in = 0;
    strm.next_in = Z_NULL;
    ret = inflateInit2(&strm, err < 0 ? 47 : -15);
    assert(ret == Z_OK);
    strm.avail_in = len;
    strm.next_in = in;
    do {
        strm.avail_out = size;
        strm.next_out = out;
        ret = inflate(&strm, Z_TREES);
        assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR);
        if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT)
            break;
    } while (strm.avail_in || strm.avail_out == 0);
    if (err) {
        assert(ret == Z_DATA_ERROR);
        assert(strcmp(id, strm.msg) == 0);
    }
    inflateEnd(&strm);
    mem_done(&strm, prefix);

    /* then with inflateBack */
    if (err >= 0) {
        strcpy(prefix, id);
        strcat(prefix, "-back");
        mem_setup(&strm);
        ret = inflateBackInit(&strm, 15, win);
        assert(ret == Z_OK);
        strm.avail_in = len;
        strm.next_in = in;
        ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
        assert(ret != Z_STREAM_ERROR);
        if (err) {
            assert(ret == Z_DATA_ERROR);
            assert(strcmp(id, strm.msg) == 0);
        }
        inflateBackEnd(&strm);
        mem_done(&strm, prefix);
    }

    /* clean up */
    free(prefix);
    free(win);
    free(out);
    free(in);
    return ret;
}

/* cover deflate data cases in both inflate() and inflateBack() */
local void cover_inflate(void)
{
    try("0 0 0 0 0", "invalid stored block lengths", 1);
    try("3 0", "fixed", 0);
    try("6", "invalid block type", 1);
    try("1 1 0 fe ff 0", "stored", 0);
    try("fc 0 0", "too many length or distance symbols", 1);
    try("4 0 fe ff", "invalid code lengths set", 1);
    try("4 0 24 49 0", "invalid bit length repeat", 1);
    try("4 0 24 e9 ff ff", "invalid bit length repeat", 1);
    try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1);
    try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0",
        "invalid literal/lengths set", 1);
    try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1);
    try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1);
    try("2 7e ff ff", "invalid distance code", 1);
    try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1);

    /* also trailer mismatch just in inflate() */
    try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1);
    try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1",
        "incorrect length check", -1);
    try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0);
    try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f",
        "long code", 0);
    try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0);
    try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c",
        "long distance and extra", 0);
    try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
        "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0);
    inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258,
        Z_STREAM_END);
    inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK);
}

/* cover remaining lines in inftrees.c */
local void cover_trees(void)
{
    int ret;
    unsigned bits;
    unsigned short lens[16], work[16];
    code *next, table[ENOUGH_DISTS];

    /* we need to call inflate_table() directly in order to manifest not-
       enough errors, since zlib insures that enough is always enough */
    for (bits = 0; bits < 15; bits++)
        lens[bits] = (unsigned short)(bits + 1);
    lens[15] = 15;
    next = table;
    bits = 15;
    ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
                                                assert(ret == 1);
    next = table;
    bits = 1;
    ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
                                                assert(ret == 1);
    fputs("inflate_table not enough errors\n", stderr);
}

/* cover remaining inffast.c decoding and window copying */
local void cover_fast(void)
{
    inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68"
M
Mark Adler 已提交
644
        " ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR);
645
    inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49"
M
Mark Adler 已提交
646 647 648 649 650 651 652
        " 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258,
        Z_DATA_ERROR);
    inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258,
        Z_DATA_ERROR);
    inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258,
        Z_DATA_ERROR);
    inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0",
653 654
        "fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR);
    inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK);
M
Mark Adler 已提交
655
    inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0",
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        "contiguous and wrap around window", 6, -8, 259, Z_OK);
    inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259,
        Z_STREAM_END);
}

int main(void)
{
    fprintf(stderr, "%s\n", zlibVersion());
    cover_support();
    cover_wrap();
    cover_back();
    cover_inflate();
    cover_trees();
    cover_fast();
    return 0;
}