- 21 9月, 2019 1 次提交
-
-
由 Kurt Roeckx 提交于
Found by OSS-Fuzz Reviewed-by: NRichard Levitte <levitte@openssl.org> Reviewed-by: NPaul Dale <paul.dale@oracle.com> GH: #9959 (cherry picked from commit a6105ef40d65b35818f2b8ae8ca9e57ca6956d1d)
-
- 17 9月, 2019 2 次提交
-
-
由 Jon Spillett 提交于
Currently the pkcs12 app will only ever print the first value of a multi-value attribute. This is OK for some attributes (e.g. friendlyName, localKeyId) but may miss values for other attributes. Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NRichard Levitte <levitte@openssl.org> Reviewed-by: NMatthias St. Pierre <Matthias.St.Pierre@ncp-e.com> (Merged from https://github.com/openssl/openssl/pull/9751) (cherry picked from commit dbcc7b45670483cc89428afe1d3c363ef83d76df)
-
由 Bernd Edlinger 提交于
Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9889)
-
- 16 9月, 2019 1 次提交
-
-
由 ManishPatidar1 提交于
Reviewed-by: NDmitry Belyavskiy <beldmit@gmail.com> Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9830) (cherry picked from commit 6ef03ea98fac501e6d6e33bac6ad3c92ea074712)
-
- 15 9月, 2019 2 次提交
-
-
由 Jan-Frederik Rieckers 提交于
CLA: trivial Reviewed-by: NMatthias St. Pierre <Matthias.St.Pierre@ncp-e.com> Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9894) (cherry picked from commit 64c1e74572f16a3e7c225f66fe85a3451ad39e68)
-
由 Richard Levitte 提交于
Reviewed-by: NMatthias St. Pierre <Matthias.St.Pierre@ncp-e.com> (Merged from https://github.com/openssl/openssl/pull/9812) (cherry picked from commit bd9faf117db1e53b2ad2ee9cbfe8def8c98ecb7b)
-
- 13 9月, 2019 3 次提交
-
-
由 Bernd Edlinger 提交于
[extended tests] Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9888)
-
由 Bernd Edlinger 提交于
[extended tests] Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9886)
-
由 Bernd Edlinger 提交于
Reviewed-by: NPaul Dale <paul.dale@oracle.com> Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9833) (cherry picked from commit f28bc7d386b25fb75625d0c62c6b2e6d21de0d09)
-
- 12 9月, 2019 1 次提交
-
-
由 Tomas Mraz 提交于
There can be data to write in output buffer and data to read that were not yet read in the input stream. Fixes #9866 Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9877) (cherry picked from commit 6beb8b39ba8e4cb005c1fcd2586ba19e17f04b95)
-
- 11 9月, 2019 2 次提交
-
-
由 Dr. Matthias St. Pierre 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9860)
-
由 Dr. Matthias St. Pierre 提交于
Fixes #9858 Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9860)
-
- 10 9月, 2019 11 次提交
-
-
由 Matt Caswell 提交于
Reviewed-by: NRichard Levitte <levitte@openssl.org>
-
由 Matt Caswell 提交于
Reviewed-by: NRichard Levitte <levitte@openssl.org>
-
由 Matt Caswell 提交于
Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9847)
-
由 Matt Caswell 提交于
Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9844)
-
由 Bernd Edlinger 提交于
An attack is simple, if the first CMS_recipientInfo is valid but the second CMS_recipientInfo is chosen ciphertext. If the second recipientInfo decodes to PKCS #1 v1.5 form plaintext, the correct encryption key will be replaced by garbage, and the message cannot be decoded, but if the RSA decryption fails, the correct encryption key is used and the recipient will not notice the attack. As a work around for this potential attack the length of the decrypted key must be equal to the cipher default key length, in case the certifiate is not given and all recipientInfo are tried out. The old behaviour can be re-enabled in the CMS code by setting the CMS_DEBUG_DECRYPT flag. Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9777) (cherry picked from commit 5840ed0cd1e6487d247efbc1a04136a41d7b3a37)
-
由 Matt Caswell 提交于
Reviewed-by: NPaul Dale <paul.dale@oracle.com> Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9841)
-
由 Bernd Edlinger 提交于
Due to the dynamic allocation that was added to rand_pool_add_begin this function could now return a null pointer where it was previously guaranteed to succeed. But the return value of this function does not need to be checked by design. Move rand_pool_grow from rand_pool_add_begin to rand_pool_bytes_needed. Make an allocation error persistent to avoid falling back to less secure or blocking entropy sources. Fixes: a6a66e4511ee ("Make rand_pool buffers more dynamic in their sizing.") Reviewed-by: NMatthias St. Pierre <Matthias.St.Pierre@ncp-e.com> Reviewed-by: NPaul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9687) (cherry picked from commit fa3eb248e29ca8031e6a14e8a2c6f3cd58b5450e)
-
由 Bernd Edlinger 提交于
There was a warning about unused variables in this config: ./config --strict-warnings --with-rand-seed=rdcpu Reviewed-by: NMatthias St. Pierre <Matthias.St.Pierre@ncp-e.com> Reviewed-by: NPaul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9687) (cherry picked from commit e301c147a763f67dcc5ba63eb7e2ae40d83a68aa)
-
由 Dr. Matthias St. Pierre 提交于
Since commit 7c226dfc a chained DRBG does not add additional data anymore when reseeding from its parent. The reason is that the size of the additional data exceeded the allowed size when no derivation function was used. This commit provides an alternative fix: instead of adding the entire DRBG's complete state, we just add the DRBG's address in memory, thereby providing some distinction between the different DRBG instances. Reviewed-by: NPaul Dale <paul.dale@oracle.com> Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9802)
-
由 Dr. Matthias St. Pierre 提交于
Provides a little extra fork-safety on UNIX systems, adding to the fact that all DRBGs reseed automatically when the fork_id changes. Reviewed-by: NPaul Dale <paul.dale@oracle.com> Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9802)
-
由 Dr. Matthias St. Pierre 提交于
When the new OpenSSL CSPRNG was introduced in version 1.1.1, it was announced in the release notes that it would be fork-safe, which the old CSPRNG hadn't been. The fork-safety was implemented using a fork count, which was incremented by a pthread_atfork handler. Initially, this handler was enabled by default. Unfortunately, the default behaviour had to be changed for other reasons in commit b5319bdb, so the new OpenSSL CSPRNG failed to keep its promise. This commit restores the fork-safety using a different approach. It replaces the fork count by a fork id, which coincides with the process id on UNIX-like operating systems and is zero on other operating systems. It is used to detect when an automatic reseed after a fork is necessary. To prevent a future regression, it also adds a test to verify that the child reseeds after fork. CVE-2019-1549 Reviewed-by: NPaul Dale <paul.dale@oracle.com> Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9802)
-
- 09 9月, 2019 7 次提交
-
-
由 Billy Brumley 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NNicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/9821) (cherry picked from commit 1d3cd983f56e0a580ee4216692ee3c9c7bf14de9)
-
由 Bernd Edlinger 提交于
crypto/rand/rand_win.c(70) : error C2065: 'BCRYPT_USE_SYSTEM_PREFERRED_RNG' : undeclared identifier Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9827) (cherry picked from commit d3a1128bc25ec8bf835c81821e1be68fba39ab4b)
-
由 Bernd Edlinger 提交于
Reviewed-by: NPaul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9796) (cherry picked from commit fa01370f7dc8f0a379483bbe74de11225857e5fe)
-
由 Bernd Edlinger 提交于
so results were undefined. Reviewed-by: NPaul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9796) (cherry picked from commit 2b95e8efcf8b99892106070d9ac745a0a369f503)
-
由 Bernd Edlinger 提交于
For for G=2 and 5 DH_generate_parameters will continue to generate the order 2q subgroup for compatibility with previous versions. For G=3 DH_generate_parameters generates an order q subgroup, but it will not pass the check in DH_check with previous OpenSSL versions. Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9820)
-
由 Nicola Tuveri 提交于
(cherry picked from commit 65936a56461fe09e8c81bca45122af5adcfabb00) Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9813)
-
由 Nicola Tuveri 提交于
Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. This commit includes a partial backport of https://github.com/openssl/openssl/pull/8555 (commit 8402cd5f75f8c2f60d8bd39775b24b03dd8b3b38) for which the main author is Shane Lontis. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Co-authored-by: NShane Lontis <shane.lontis@oracle.com> (Backport from https://github.com/openssl/openssl/pull/9808) Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9809)
-
- 08 9月, 2019 1 次提交
-
-
由 Dr. Matthias St. Pierre 提交于
While gcc ignores unknown options of the type '-Wno-xxx', clang by default issues a warning [-Wunknown-warning-option] (see [3]), which together with '-Werror' causes the build to fail. This turned out to be a problem on the 1.0.2 stable branch in the case of the '-Wextended-offsetof' option, which was removed in version 6.0.0, but needs to be kept here in order to support older clang versions, too (see #9446). Incidentally, master and 1.1.1 branch already contained the -Wno-unknown-warning-option option. Due to its special role and its importance, this commit adds an explaining commit message and moves the option to the front. [extended tests] Reviewed-by: NRichard Levitte <levitte@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> Reviewed-by: NPaul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9447) (cherry picked from commit 03e5668343078b963cc6544ad7270743de13e514)
-
- 07 9月, 2019 9 次提交
-
-
由 Nicola Tuveri 提交于
This amends the entry added in a6186f39 with the relevant CVE. Reviewed-by: NMatt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9800)
-
由 Bernd Edlinger 提交于
This leaves VPAES and AESNI support. The VPAES performance is comparable but BSAES is not completely constant time. There are table lookups using secret key data in AES_set_encrypt/decrypt_key and in ctr mode short data uses the non-constant time AES_encrypt function instead of bit-slicing. Furthermore the AES_ASM is by far outperformed by recent GCC versions. Since BSAES calls back to AES_ASM for short data blocks the performance on those is also worse than the pure software implementaion. Fixes: #9640 Reviewed-by: NRichard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9675)
-
由 Billy Brumley 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NTomas Mraz <tmraz@fedoraproject.org> Reviewed-by: NNicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/9781)
-
由 Billy Brumley 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NTomas Mraz <tmraz@fedoraproject.org> Reviewed-by: NNicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/9781)
-
由 Billy Brumley 提交于
The cofactor argument to EC_GROUP_set_generator is optional, and SCA mitigations for ECC currently use it. So the library currently falls back to very old SCA-vulnerable code if the cofactor is not present. This PR allows EC_GROUP_set_generator to compute the cofactor for all curves of cryptographic interest. Steering scalar multiplication to more SCA-robust code. This issue affects persisted private keys in explicit parameter form, where the (optional) cofactor field is zero or absent. It also affects curves not built-in to the library, but constructed programatically with explicit parameters, then calling EC_GROUP_set_generator with a nonsensical value (NULL, zero). The very old scalar multiplication code is known to be vulnerable to local uarch attacks, outside of the OpenSSL threat model. New results suggest the code path is also vulnerable to traditional wall clock timing attacks. CVE-2019-1547 Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NTomas Mraz <tmraz@fedoraproject.org> Reviewed-by: NNicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/9781)
-
由 Nicola Tuveri 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9511) (cherry picked from commit 4fe2ee3a449a8ca2886584e221f34ff0ef5de119)
-
由 Nicola Tuveri 提交于
Replace flip_endian() by using the little endian specific BN_bn2lebinpad() and BN_lebin2bn(). Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9511) (cherry picked from commit e0b660c27d8d97b4ad9e2098cc957de26872c0ef)
-
由 Nicola Tuveri 提交于
Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9511) (cherry picked from commit 1b338abe3abb8c73f004c34d4b8a9272b89dfd5d)
-
由 Nicola Tuveri 提交于
This issue was partially addressed by commit 972c87df, which hardened its callee BN_num_bits_word() to avoid leaking the most-significant word of its argument via branching and memory access pattern. The commit message also reported: > There are a few places where BN_num_bits is called on an input where > the bit length is also secret. This does *not* fully resolve those > cases as we still only look at the top word. BN_num_bits() is called directly or indirectly (e.g., through BN_num_bytes() or BN_bn2binpad() ) in various parts of the `crypto/ec` code, notably in all the currently supported implementations of scalar multiplication (in the generic path through ec_scalar_mul_ladder() as well as in dedicated methods like ecp_nistp{224,256,521}.c and ecp_nistz256.c). Under the right conditions, a motivated SCA attacker could retrieve the secret bitlength of a secret nonce through this vulnerability, potentially leading, ultimately, to recover a long-term secret key. With this commit, exclusively for BIGNUMs that are flagged with BN_FLG_CONSTTIME, instead of accessing only bn->top, all the limbs of the BIGNUM are accessed up to bn->dmax and bitwise masking is used to avoid branching. Memory access pattern still leaks bn->dmax, the size of the lazily allocated buffer for representing the BIGNUM, which is inevitable with the current BIGNUM architecture: reading past bn->dmax would be an out-of-bound read. As such, it's the caller responsibility to ensure that bn->dmax does not leak secret information, by explicitly expanding the internal BIGNUM buffer to a public value sufficient to avoid any lazy reallocation while manipulating it: this should be already done at the top level alongside setting the BN_FLG_CONSTTIME. Thanks to David Schrammel and Samuel Weiser for reporting this issue through responsible disclosure. Reviewed-by: NMatt Caswell <matt@openssl.org> Reviewed-by: NBernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9511) (cherry picked from commit 8b44198b916015f77bef1befa26edb48ad8a0238)
-