提交 eb791696 编写于 作者: A Andy Polyakov

ec/ecp_nistz256.c: improve ECDSA sign by 30-40%.

This is based on RT#3810, which added dedicated modular inversion.
ECDSA verify results improves as well, but not as much.
Reviewed-by: NRich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5001)
上级 617b49db
......@@ -48,6 +48,8 @@ static const ERR_STRING_DATA EC_str_functs[] = {
"ECPKParameters_print_fp"},
{ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_GET_AFFINE, 0),
"ecp_nistz256_get_affine"},
{ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_INV_MOD_ORD, 0),
"ecp_nistz256_inv_mod_ord"},
{ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, 0),
"ecp_nistz256_mult_precompute"},
{ERR_PACK(ERR_LIB_EC, EC_F_ECP_NISTZ256_POINTS_MUL, 0),
......
......@@ -155,6 +155,9 @@ struct ec_method_st {
/* custom ECDH operation */
int (*ecdh_compute_key)(unsigned char **pout, size_t *poutlen,
const EC_POINT *pub_key, const EC_KEY *ecdh);
/* Inverse modulo order */
int (*field_inverse_mod_ord)(const EC_GROUP *, BIGNUM *r, BIGNUM *x,
BN_CTX *ctx);
};
/*
......@@ -520,7 +523,6 @@ void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign,
unsigned char *digit, unsigned char in);
#endif
int ec_precompute_mont_data(EC_GROUP *);
int ec_group_simple_order_bits(const EC_GROUP *group);
#ifdef ECP_NISTZ256_ASM
......@@ -604,3 +606,6 @@ int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
const uint8_t peer_public_value[32]);
void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]);
int EC_GROUP_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
BIGNUM *x, BN_CTX *ctx);
......@@ -261,6 +261,8 @@ int EC_METHOD_get_field_type(const EC_METHOD *meth)
return meth->field_type;
}
static int ec_precompute_mont_data(EC_GROUP *);
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
const BIGNUM *order, const BIGNUM *cofactor)
{
......@@ -961,7 +963,7 @@ int EC_GROUP_have_precompute_mult(const EC_GROUP *group)
* ec_precompute_mont_data sets |group->mont_data| from |group->order| and
* returns one on success. On error it returns zero.
*/
int ec_precompute_mont_data(EC_GROUP *group)
static int ec_precompute_mont_data(EC_GROUP *group)
{
BN_CTX *ctx = BN_CTX_new();
int ret = 0;
......@@ -1006,3 +1008,12 @@ int ec_group_simple_order_bits(const EC_GROUP *group)
return 0;
return BN_num_bits(group->order);
}
int EC_GROUP_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
BIGNUM *x, BN_CTX *ctx)
{
if (group->meth->field_inverse_mod_ord != NULL)
return group->meth->field_inverse_mod_ord(group, res, x, ctx);
else
return 0;
}
......@@ -153,30 +153,33 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in,
}
while (BN_is_zero(r));
/* compute the inverse of k */
if (EC_GROUP_get_mont_data(group) != NULL) {
/*
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermat's Little Theorem instead.
*/
if (!BN_set_word(X, 2)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_sub(X, order, X, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime
(k, k, X, order, ctx, EC_GROUP_get_mont_data(group))) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
} else {
if (!BN_mod_inverse(k, k, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
/* Check if optimized inverse is implemented */
if (EC_GROUP_do_inverse_ord(group, k, k, ctx) == 0) {
/* compute the inverse of k */
if (group->mont_data != NULL) {
/*
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(X, 2)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_sub(X, order, X, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx,
group->mont_data)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
} else {
if (!BN_mod_inverse(k, k, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
}
......@@ -407,9 +410,12 @@ int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len,
goto err;
}
/* calculate tmp1 = inv(S) mod order */
if (!BN_mod_inverse(u2, sig->s, order, ctx)) {
ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
goto err;
/* Check if optimized inverse is implemented */
if (EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx) == 0) {
if (!BN_mod_inverse(u2, sig->s, order, ctx)) {
ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
goto err;
}
}
/* digest -> m */
i = BN_num_bits(order);
......
/*
* Copyright 2014-2017 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2014, Intel Corporation. All Rights Reserved.
* Copyright (c) 2015, CloudFlare, Inc.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
* (2) University of Haifa, Israel
* (3) CloudFlare, Inc.
*
* Reference:
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
......@@ -908,7 +910,7 @@ __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
*/
#if defined(ECP_NISTZ256_AVX2)
# if !(defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_MX64)) || \
defined(_M_AMD64) || defined(_M_X64)) || \
!(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */
# undef ECP_NISTZ256_AVX2
# else
......@@ -1495,6 +1497,117 @@ static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
return HAVEPRECOMP(group, nistz256);
}
#if defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__powerpc64__) || defined(_ARCH_PP64)
/*
* Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P)
*/
void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS],
const BN_ULONG b[P256_LIMBS]);
void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS],
int rep);
static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
BIGNUM *x, BN_CTX *ctx)
{
/* RR = 2^512 mod ord(p256) */
static const BN_ULONG RR[P256_LIMBS] = { TOBN(0x83244c95,0xbe79eea2),
TOBN(0x4699799c,0x49bd6fa6),
TOBN(0x2845b239,0x2b6bec59),
TOBN(0x66e12d94,0xf3d95620) };
/* The constant 1 (unlike ONE that is one in Montgomery representation) */
static const BN_ULONG one[P256_LIMBS] = { TOBN(0,1),TOBN(0,0),
TOBN(0,0),TOBN(0,0) };
/* expLo - the low 128bit of the exponent we use (ord(p256) - 2),
* split into 4bit windows */
static const unsigned char expLo[32] = { 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,
0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4,
0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,
0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf };
/*
* We don't use entry 0 in the table, so we omit it and address
* with -1 offset.
*/
BN_ULONG table[15][P256_LIMBS];
BN_ULONG out[P256_LIMBS], t[P256_LIMBS];
int i, ret = 0;
/*
* Catch allocation failure early.
*/
if (bn_wexpand(r, P256_LIMBS) == NULL) {
ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
goto err;
}
if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
BIGNUM *tmp;
if ((tmp = BN_CTX_get(ctx)) == NULL
|| !BN_nnmod(tmp, x, group->order, ctx)) {
ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB);
goto err;
}
x = tmp;
}
if (!ecp_nistz256_bignum_to_field_elem(t, x)) {
ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE);
goto err;
}
ecp_nistz256_ord_mul_mont(table[0], t, RR);
for (i = 2; i < 16; i += 2) {
ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1);
ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]);
}
/*
* The top 128bit of the exponent are highly redudndant, so we
* perform an optimized flow
*/
ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */
ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */
ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */
ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */
ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */
ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */
ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */
ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */
ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */
ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */
/*
* The bottom 128 bit of the exponent are easier done with a table
*/
for(i = 0; i < 32; i++) {
ecp_nistz256_ord_sqr_mont(out, out, 4);
/* The exponent is public, no need in constant-time access */
ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]);
}
ecp_nistz256_ord_mul_mont(out, out, one);
/*
* Can't fail, but check return code to be consistent anyway.
*/
if (!bn_set_words(r, out, P256_LIMBS))
goto err;
ret = 1;
err:
return ret;
}
#else
# define ecp_nistz256_inv_mod_ord NULL
#endif
const EC_METHOD *EC_GFp_nistz256_method(void)
{
static const EC_METHOD ret = {
......@@ -1544,7 +1657,8 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key
ecdh_simple_compute_key,
ecp_nistz256_inv_mod_ord /* can be #defined-ed NULL */
};
return &ret;
......
......@@ -458,6 +458,7 @@ EC_F_ECPARAMETERS_PRINT_FP:148:ECParameters_print_fp
EC_F_ECPKPARAMETERS_PRINT:149:ECPKParameters_print
EC_F_ECPKPARAMETERS_PRINT_FP:150:ECPKParameters_print_fp
EC_F_ECP_NISTZ256_GET_AFFINE:240:ecp_nistz256_get_affine
EC_F_ECP_NISTZ256_INV_MOD_ORD:275:ecp_nistz256_inv_mod_ord
EC_F_ECP_NISTZ256_MULT_PRECOMPUTE:243:ecp_nistz256_mult_precompute
EC_F_ECP_NISTZ256_POINTS_MUL:241:ecp_nistz256_points_mul
EC_F_ECP_NISTZ256_PRE_COMP_NEW:244:ecp_nistz256_pre_comp_new
......
......@@ -50,6 +50,7 @@ int ERR_load_EC_strings(void);
# define EC_F_ECPKPARAMETERS_PRINT 149
# define EC_F_ECPKPARAMETERS_PRINT_FP 150
# define EC_F_ECP_NISTZ256_GET_AFFINE 240
# define EC_F_ECP_NISTZ256_INV_MOD_ORD 275
# define EC_F_ECP_NISTZ256_MULT_PRECOMPUTE 243
# define EC_F_ECP_NISTZ256_POINTS_MUL 241
# define EC_F_ECP_NISTZ256_PRE_COMP_NEW 244
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册