提交 e3a510f8 编写于 作者: A Andy Polyakov

Add GHASH x86 assembler.

上级 b17bdc77
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# The module implements "4-bit" Galois field multiplication and
# streamed GHASH function. "4-bit" means that it uses 256 bytes
# per-key table [+128/256 bytes fixed table]. It has two code paths:
# vanilla x86 and vanilla MMX. Former will be executed on 486 and
# Pentium, latter on all others. Performance results are for streamed
# GHASH subroutine and are expressed in cycles per processed byte,
# less is better:
#
# gcc 2.95.3(*) MMX assembler x86 assembler
#
# Pentium 100/112(**) - 50
# PIII 63 /77 17 24
# P4 96 /122 33 84(***)
# Opteron 50 /71 22 30
# Core2 63 /102 21 28
#
# (*) gcc 3.4.x was observed to generate few percent slower code,
# which is one of reasons why 2.95.3 result were chosen;
# another reason is lack of 3.4.x results for older CPUs;
# (**) second number is result for code compiled with -fPIC flag,
# which is actually more relevant, because assembler code is
# position-independent;
# (***) see comment in non-MMX routine for further details;
#
# To summarize, it's 2-3 times faster than gcc-generated code. To
# anchor it to something else SHA1 assembler processes single byte
# in 11-13 cycles.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
&asm_init($ARGV[0],"gcm-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
&static_label("rem_4bit") if (!$x86only);
$Zhh = "ebp";
$Zhl = "edx";
$Zlh = "ecx";
$Zll = "ebx";
$inp = "edi";
$Htbl = "esi";
$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
# than unrolled, which has to be weighted against
# almost 2x code size reduction. Well, *overall*
# code size. x86-specific code shrinks by 7.5x...
sub mmx_loop() {
# MMX version performs 2.5 times better on P4 (see comment in non-MMX
# routine for further details), 35% better on Opteron and Core2, 40%
# better on PIII... In other words effort is considered to be well
# spent...
my $inp = shift;
my $rem_4bit = shift;
my $cnt = $Zhh;
my $nhi = $Zhl;
my $nlo = $Zlh;
my $rem = $Zll;
my $Zlo = "mm0";
my $Zhi = "mm1";
my $tmp = "mm2";
&xor ($nlo,$nlo); # avoid partial register stalls on PIII
&mov ($nhi,$Zll);
&mov (&LB($nlo),&LB($nhi));
&mov ($cnt,15);
&shl (&LB($nlo),4);
&and ($nhi,0xf0);
&movq ($Zlo,&QWP(8,$Htbl,$nlo));
&movq ($Zhi,&QWP(0,$Htbl,$nlo));
&movd ($rem,$Zlo);
&jmp (&label("mmx_loop"));
&set_label("mmx_loop",16);
&psrlq ($Zlo,4);
&and ($rem,0xf);
&movq ($tmp,$Zhi);
&psrlq ($Zhi,4);
&dec ($cnt);
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
&psllq ($tmp,60);
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
&movd ($rem,$Zlo);
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
&pxor ($Zlo,$tmp);
&js (&label("mmx_break"));
&movz ($nhi,&BP(0,$inp,$cnt));
&psrlq ($Zlo,4);
&mov (&LB($nlo),&LB($nhi));
&movq ($tmp,$Zhi);
&shl (&LB($nlo),4);
&psrlq ($Zhi,4);
&and ($rem,0xf);
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
&psllq ($tmp,60);
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
&movd ($rem,$Zlo);
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
&pxor ($Zlo,$tmp);
&and ($nhi,0xf0);
&jmp (&label("mmx_loop"));
&set_label("mmx_break",16);
&psrlq ($Zlo,32); # lower part of Zlo is already there
&movd ($Zhl,$Zhi);
&psrlq ($Zhi,32);
&movd ($Zlh,$Zlo);
&movd ($Zhh,$Zhi);
&bswap ($Zll);
&bswap ($Zhl);
&bswap ($Zlh);
&bswap ($Zhh);
}
sub x86_loop {
my $off = shift;
my $rem = "eax";
&mov ($Zhh,&DWP(4,$Htbl,$Zll));
&mov ($Zhl,&DWP(0,$Htbl,$Zll));
&mov ($Zlh,&DWP(12,$Htbl,$Zll));
&mov ($Zll,&DWP(8,$Htbl,$Zll));
&xor ($rem,$rem); # avoid partial register stalls on PIII
# shrd practically kills P4, 2.5x deterioration, but P4 has
# MMX code-path to execute. shrd runs tad faster [than twice
# the shifts, move's and or's] on pre-MMX Pentium (as well as
# PIII and Core2), *but* minimizes code size, spares register
# and thus allows to fold the loop...
if (!$unroll) {
my $cnt = $inp;
&mov ($cnt,15);
&jmp (&label("x86_loop"));
&set_label("x86_loop",16);
for($i=1;$i<=2;$i++) {
&mov (&LB($rem),&LB($Zll));
&shrd ($Zll,$Zlh,4);
&and (&LB($rem),0xf);
&shrd ($Zlh,$Zhl,4);
&shrd ($Zhl,$Zhh,4);
&shr ($Zhh,4);
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
&mov (&LB($rem),&BP($off,"esp",$cnt));
if ($i&1) {
&and (&LB($rem),0xf0);
} else {
&shl (&LB($rem),4);
}
&xor ($Zll,&DWP(8,$Htbl,$rem));
&xor ($Zlh,&DWP(12,$Htbl,$rem));
&xor ($Zhl,&DWP(0,$Htbl,$rem));
&xor ($Zhh,&DWP(4,$Htbl,$rem));
if ($i&1) {
&dec ($cnt);
&js (&label("x86_break"));
} else {
&jmp (&label("x86_loop"));
}
}
&set_label("x86_break",16);
} else {
for($i=1;$i<32;$i++) {
&comment($i);
&mov (&LB($rem),&LB($Zll));
&shrd ($Zll,$Zlh,4);
&and (&LB($rem),0xf);
&shrd ($Zlh,$Zhl,4);
&shrd ($Zhl,$Zhh,4);
&shr ($Zhh,4);
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
if ($i&1) {
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
&and (&LB($rem),0xf0);
} else {
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
&shl (&LB($rem),4);
}
&xor ($Zll,&DWP(8,$Htbl,$rem));
&xor ($Zlh,&DWP(12,$Htbl,$rem));
&xor ($Zhl,&DWP(0,$Htbl,$rem));
&xor ($Zhh,&DWP(4,$Htbl,$rem));
}
}
&bswap ($Zll);
&bswap ($Zlh);
&bswap ($Zhl);
if (!$x86only) {
&bswap ($Zhh);
} else {
&mov ("eax",$Zhh);
&bswap ("eax");
&mov ($Zhh,"eax");
}
}
if ($unroll) {
&function_begin_B("_x86_gmult_4bit_inner");
&x86_loop(4);
&ret ();
&function_end_B("_x86_gmult_4bit_inner");
}
&function_begin("gcm_gmult_4bit");
if (!$x86only) {
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("eax");
&picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
&bt (&DWP(0,"ebp"),23); # check for MMX bit
&jnc (&label("x86"));
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
&mov ($inp,&wparam(0)); # load Xi
&mov ($Htbl,&wparam(1)); # load Htable
&movz ($Zll,&BP(15,$inp));
&mmx_loop($inp,"eax");
&emms ();
&mov (&DWP(12,$inp),$Zll);
&mov (&DWP(4,$inp),$Zhl);
&mov (&DWP(8,$inp),$Zlh);
&mov (&DWP(0,$inp),$Zhh);
&function_end_A();
&set_label("x86",16);
}
&stack_push(16+4+1); # +1 for stack alignment
&mov ($inp,&wparam(0)); # load Xi
&mov ($Htbl,&wparam(1)); # load Htable
&mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
&mov ($Zhl,&DWP(4,$inp));
&mov ($Zlh,&DWP(8,$inp));
&mov ($Zll,&DWP(12,$inp));
&deposit_rem_4bit(16);
&mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
&mov (&DWP(4,"esp"),$Zhl);
&mov (&DWP(8,"esp"),$Zlh);
&mov (&DWP(12,"esp"),$Zll);
&shr ($Zll,20);
&and ($Zll,0xf0);
if ($unroll) {
&call ("_x86_gmult_4bit_inner");
} else {
&x86_loop(0);
&mov ($inp,&wparam(0));
}
&mov (&DWP(12,$inp),$Zll);
&mov (&DWP(8,$inp),$Zlh);
&mov (&DWP(4,$inp),$Zhl);
&mov (&DWP(0,$inp),$Zhh);
&stack_pop(16+4+1);
&function_end("gcm_gmult_4bit");
# Streamed version performs 20% better on P4, 7% on Opteron,
# 10% on Core2 and PIII...
&function_begin("gcm_ghash_4bit");
if (!$x86only) {
&call (&label("pic_point"));
&set_label("pic_point");
&blindpop("eax");
&picmeup("ebp","OPENSSL_ia32cap_P","eax",&label("pic_point"));
&bt (&DWP(0,"ebp"),23); # check for MMX bit
&jnc (&label("x86"));
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
&mov ($inp,&wparam(0)); # load in
&mov ($Zlh,&wparam(1)); # load len
&mov ($Zhh,&wparam(2)); # load Xi
&mov ($Htbl,&wparam(3)); # load Htable
&add ($Zlh,$inp);
&mov (&wparam(1),$Zlh); # len to point at the end of input
&stack_push(4+1); # +1 for stack alignment
&mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
&mov ($Zhl,&DWP(4,$Zhh));
&mov ($Zlh,&DWP(8,$Zhh));
&mov ($Zhh,&DWP(0,$Zhh));
&set_label("mmx_outer_loop",16);
&xor ($Zll,&DWP(12,$inp));
&xor ($Zhl,&DWP(4,$inp));
&xor ($Zlh,&DWP(8,$inp));
&xor ($Zhh,&DWP(0,$inp));
&mov (&DWP(12,"esp"),$Zll);
&mov (&DWP(4,"esp"),$Zhl);
&mov (&DWP(8,"esp"),$Zlh);
&mov (&DWP(0,"esp"),$Zhh);
&shr ($Zll,24);
&mmx_loop("esp","eax");
&lea ($inp,&DWP(16,$inp));
&cmp ($inp,&wparam(1));
&jb (&label("mmx_outer_loop"));
&mov ($inp,&wparam(2)); # load Xi
&emms ();
&mov (&DWP(12,$inp),$Zll);
&mov (&DWP(4,$inp),$Zhl);
&mov (&DWP(8,$inp),$Zlh);
&mov (&DWP(0,$inp),$Zhh);
&stack_pop(4+1);
&function_end_A();
&set_label("x86",16);
}
&stack_push(16+4+1); # +1 for 64-bit alignment
&mov ($inp,&wparam(0)); # load in
&mov ("ecx",&wparam(1)); # load len
&mov ($Zll,&wparam(2)); # load Xi
&mov ($Htbl,&wparam(3)); # load Htable
&add ("ecx",$inp);
&mov (&wparam(1),"ecx");
&mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
&mov ($Zhl,&DWP(4,$Zll));
&mov ($Zlh,&DWP(8,$Zll));
&mov ($Zll,&DWP(12,$Zll));
&deposit_rem_4bit(16);
&set_label("x86_outer_loop",16);
&xor ($Zll,&DWP(12,$inp)); # xor with input
&xor ($Zlh,&DWP(8,$inp));
&xor ($Zhl,&DWP(4,$inp));
&xor ($Zhh,&DWP(0,$inp));
&mov (&DWP(12,"esp"),$Zll); # dump it on stack
&mov (&DWP(8,"esp"),$Zlh);
&mov (&DWP(4,"esp"),$Zhl);
&mov (&DWP(0,"esp"),$Zhh);
&shr ($Zll,20);
&and ($Zll,0xf0);
if ($unroll) {
&call ("_x86_gmult_4bit_inner");
} else {
&x86_loop(0);
&mov ($inp,&wparam(0));
}
&lea ($inp,&DWP(16,$inp));
&cmp ($inp,&wparam(1));
&mov (&wparam(0),$inp) if (!$unroll);
&jb (&label("x86_outer_loop"));
&mov ($inp,&wparam(2)); # load Xi
&mov (&DWP(12,$inp),$Zll);
&mov (&DWP(8,$inp),$Zlh);
&mov (&DWP(4,$inp),$Zhl);
&mov (&DWP(0,$inp),$Zhh);
&stack_pop(16+4+1);
&function_end("gcm_ghash_4bit");
sub deposit_rem_4bit {
my $bias = shift;
&mov (&DWP($bias+0, "esp"),0x0000<<16);
&mov (&DWP($bias+4, "esp"),0x1C20<<16);
&mov (&DWP($bias+8, "esp"),0x3840<<16);
&mov (&DWP($bias+12,"esp"),0x2460<<16);
&mov (&DWP($bias+16,"esp"),0x7080<<16);
&mov (&DWP($bias+20,"esp"),0x6CA0<<16);
&mov (&DWP($bias+24,"esp"),0x48C0<<16);
&mov (&DWP($bias+28,"esp"),0x54E0<<16);
&mov (&DWP($bias+32,"esp"),0xE100<<16);
&mov (&DWP($bias+36,"esp"),0xFD20<<16);
&mov (&DWP($bias+40,"esp"),0xD940<<16);
&mov (&DWP($bias+44,"esp"),0xC560<<16);
&mov (&DWP($bias+48,"esp"),0x9180<<16);
&mov (&DWP($bias+52,"esp"),0x8DA0<<16);
&mov (&DWP($bias+56,"esp"),0xA9C0<<16);
&mov (&DWP($bias+60,"esp"),0xB5E0<<16);
}
if (!$x86only) {
&set_label("rem_4bit",64);
&data_word(0,0x0000<<16,0,0x1C20<<16,0,0x3840<<16,0,0x2460<<16);
&data_word(0,0x7080<<16,0,0x6CA0<<16,0,0x48C0<<16,0,0x54E0<<16);
&data_word(0,0xE100<<16,0,0xFD20<<16,0,0xD940<<16,0,0xC560<<16);
&data_word(0,0x9180<<16,0,0x8DA0<<16,0,0xA9C0<<16,0,0xB5E0<<16);
}
&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册