Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
OpenHarmony
Third Party Openssl
提交
d8ea368c
T
Third Party Openssl
项目概览
OpenHarmony
/
Third Party Openssl
1 年多 前同步成功
通知
10
Star
18
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
T
Third Party Openssl
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d8ea368c
编写于
5月 21, 2011
作者:
A
Andy Polyakov
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ec_cvt.c: ARM comparison results were wrong, clarify the background.
上级
fdf6dac8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
6 deletion
+12
-6
crypto/ec/ec_cvt.c
crypto/ec/ec_cvt.c
+12
-6
未找到文件。
crypto/ec/ec_cvt.c
浏览文件 @
d8ea368c
...
...
@@ -85,15 +85,21 @@ EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM
* This might appear controversial, but the fact is that generic
* prime method was observed to deliver better performance even
* for NIST primes on a range of platforms, e.g.: 60%-15%
* improvement on IA-64,
50%-20
% on ARM, 30%-90% on P4, 20%-25%
* improvement on IA-64,
~25
% on ARM, 30%-90% on P4, 20%-25%
* in 32-bit build and 35%--12% in 64-bit build on Core2...
* Coefficients are relative to optimized bn_nist.c for most
* intensive ECDSA verify and ECDH operations for 192- and 521-
* bit keys respectively. What effectively happens is that loop
* with bn_mul_add_words is put against bn_mul_mont, and latter
* wins on short vectors. Correct solution should be implementing
* dedicated NxN multiplication subroutines for small N. But till
* it materializes, let's stick to generic prime method...
* bit keys respectively. Choice of these boundary values is
* arguable, because the dependency of improvement coefficient
* from key length is not a "monotone" curve. For example while
* 571-bit result is 23% on ARM, 384-bit one is -1%. But it's
* generally faster, sometimes "respectfully" faster, or
* "tolerably" slower... What effectively happens is that loop
* with bn_mul_add_words is put against bn_mul_mont, and the
* latter "wins" on short vectors. Correct solution should be
* implementing dedicated NxN multiplication subroutines for
* small N. But till it materializes, let's stick to generic
* prime method...
* <appro>
*/
meth
=
EC_GFp_mont_method
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录